已知角AOB等于30度,点P为角AOB内一点,OP等于10cm,分别在OA,OB上确定M,N,使角

MNP的周长最短,并求出这个最小值... MNP的周长最短,并求出这个最小值 展开
 我来答
教育行业每日节奏
推荐于2019-06-21 · TA获得超过8.1万个赞
知道小有建树答主
回答量:1.5万
采纳率:93%
帮助的人:791万
展开全部
法:作点P关于OA的对称点P1,作点P关于OB的对称点P2,连接P1P2,交OA于点M,交OB于点N,则△PMN是周长最短的
OA是PP1的垂直平分线,所以OP1=OP=10,OB是PP2的垂直平分线,所以OP2=OP=10
又因为∠P1OA=∠POA,∠P1OB=∠POB,∠AOB=30°,所以∠P1OP2=60°
所以三角形P1OP2是等边三角形,所以P1P2=OP1=10
又PM=P1M,PN=P2N,所以三角形PMN周长的最小值是10
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式