3个回答
展开全部
lim(x->∞)[(x+2a)/(x-1)]^x
=lim(x->∞)[ 1 + (2a+1)/(x-1)]^x
let
1/y = (2a+1)/(x-1)
x = (2a+1)y + 1
x->∞, y->∞
lim(x->∞)[ 1 + (2a+1)/(x-1)]^x
=lim(y->∞)[ 1 + 1/y]^[(2a+1)y + 1]
=e^(2a+1)
e^(2a+1)=8
a =( ln8 -1)/2
=lim(x->∞)[ 1 + (2a+1)/(x-1)]^x
let
1/y = (2a+1)/(x-1)
x = (2a+1)y + 1
x->∞, y->∞
lim(x->∞)[ 1 + (2a+1)/(x-1)]^x
=lim(y->∞)[ 1 + 1/y]^[(2a+1)y + 1]
=e^(2a+1)
e^(2a+1)=8
a =( ln8 -1)/2
更多追问追答
追答
设: 1/y = (2a+1)/(x-1)
lim(x->∞)[ 1 + (2a+1)/(x-1)]^x
=lim(y->∞)[ 1 + 1/y)]^[(2a+1)y + 1]
=e^(2a+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
利用常数e的极限定义,可得a=ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询