高中数学有关于双曲线的公式

熊猫三国
推荐于2017-11-26 · TA获得超过575个赞
知道答主
回答量:103
采纳率:0%
帮助的人:63.8万
展开全部
定义4:在平面直角坐标系中,二元二次方程f(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线。
  1.a、b、c不都是零.
  2. b^2 - 4ac > 0.
  3.a^2+b^2=c^2
  在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形。这时双曲线的方程退化为:x^2/a^2 - y^2/b^2 = 1.
  上述的四个定义是等价的,并且根据建好的前后位置判断图像关于x,y轴对称。
2 标准方程编辑本段
  1,焦点在X轴上时为:
  x^2/a^2 - y^2/b^2 = 1
  2,焦点在Y 轴上时为:
  y^2/a^2 - x^2/b^2 = 1
3 主要特点编辑本段
3.1 1、轨迹上一点的取值范围:
  │x│≥a(焦点在x轴上)或者│y│≥a(焦点在y轴上)。
3.2 2、对称性:
  关于坐标轴和原点对称
3.3 3、顶点:
  A(-a,0), A'(a,0)。同时 AA'叫做双曲线的实轴且│AA'│=2a.
  B(0,-b), B'(0,b)。同时 BB'叫做双曲线的虚轴且│BB'│=2b.
  F1(-c,0)F2(c,0).F1为双曲线的左焦点,F2为双曲线的右焦点且│F1F2│=2c
  对实轴、虚轴、焦点有:a^2+b^2=c^2
3.4 4、渐近线:
  焦点在x轴:y=±(b/a)x.
  焦点在y轴:y=±(a/b)x. 圆锥曲线ρ=ep/1-ecosθ当e>1时,表示双曲线。其中p为焦点到准线距离,θ为弦与x轴夹角。
  令1-ecosθ=0可以求出θ,这个就是渐近线的倾角。θ=arccos(1/e)
  令θ=0,得出ρ=ep/(1-e),x=ρcosθ=ep/(1-e)
  令θ=PI,得出ρ=ep/(1+e),x=ρcosθ=-ep/(1+e)
  这两个x是双曲线定点的横坐标。
  求出它们的中点的横坐标(双曲线中心横坐标)
  x=[(ep/1-e)+(-ep/1+e)]/2
  (注意化简一下)
  直线ρcosθ=[(ep/1-e)+(-ep/1+e)]/2
  是双曲线一条对称轴,注意是不与曲线相交的对称轴。
  将这条直线顺时针旋转PI/2-arccos(1/e)角度后就得到渐近线方程,设旋转后的角度是θ’
  则θ’=θ-[PI/2-arccos(1/e)]
  则θ=θ’+[PI/2-arccos(1/e)]
  代入上式:
  ρcos{θ’+[PI/2-arccos(1/e)]}=[(ep/1-e)+(-ep/1+e)]/2
  即:ρsin[arccos(1/e)-θ’]=[(ep/1-e)+(-ep/1+e)]/2
  现在可以用θ取代式中的θ’了
  得到方程:ρsin[arccos(1/e)-θ]=[(ep/1-e)+(-ep/1+e)]/2
  现证明双曲线x^2/a^2-y^2/b^2=1 上的点在渐近线中  
  设M(x,y)是双曲线在第一象限的点,则
  y=(b/a)√(x^2-a^2) (x>a)
  因为x^2-a^2<x^2,所以y=(b/a)√(x^2-a^2)<b/a√x^2=bx/a
  即y<bx/a
  所以,双曲线在第一象限内的点都在直线y=bx/a下方
  根据对称性第二、三、四象限亦如此
3.5 5、离心率:
  第一定义:e=c/a 且e∈(1,+∞).
  第二定义:双曲线上的一点P到定点F的距离│PF│ 与 点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e.
  d点│PF│/d线(点P到定直线(相应准线)的距离)=e
3.6 6、双曲线焦半径公式
  (圆锥曲线上任意一点P(x,y)到焦点距离)
  左焦半径:r=│ex+a│ 
  右焦半径:r=│ex-a│
3.7 7、等轴双曲线
  一双曲线的实轴与虚轴长相等 即:2a=2b 且 e=√2
  这时渐近线方程为:y=±x(无论焦点在x轴还是y轴)
3.8 8、共轭双曲线
  双曲线S'的实轴是双曲线S的虚轴 且 双曲线S'的虚轴是双曲线S的实轴时,称双曲线S'与双曲线S为共轭双曲线。
  几何表达:S:(x^2/a^2)-(y^2/b^2)=1 S':(y^2/b^2)-(x^2/a^2)=1
  特点:(1)共渐近线 ;与渐近线平行得线和双曲线有且只有一个交点
  (2)焦距相等
  (3)两双曲线的离心率平方后的倒数相加等于1
3.9 9、准线:
  焦点在x轴上:x=±a^2/c
  焦点在y轴上:y=±a^2/c
3.10 10、通径长:
  (圆锥曲线中,过焦点并垂直于轴的弦)
  d=2b^2/a
  11、过焦点的弦长公式:
  d=2pe/(1-e^2cos^2θ)
3.11 12、弦长公式:
  d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下:
  由 直线的斜率公式:k = (y1 - y2) / (x1 - x2)
  得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k
  分别代入两点间的距离公式:|AB| = √[(x1 - x2)^2; + (y1 - y2)^2; ]
  稍加整理即得:
  |AB| = |x1 - x2|√(1 + k^2;) 或 |AB| = |y1 - y2|√(1 + 1/k^2;)
  ·双曲线的标准公式与反比例函数  
  X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)
  而反比例函数的标准型是 xy = c (c ≠ 0)
  但是反比例函数图象确实是双曲线轨迹经过旋转得到的
  因为xy = c的对称轴是 y=x,y=-x 而X^2/a^2 - Y^2/b^2 = 1的对称轴是x轴,y轴
  所以应该旋转45度
  设旋转的角度为 a (a≠0,顺时针)
  (a为双曲线渐进线的倾斜角
  则有
  X = xcosa + ysina
  Y = - xsina + ycosa
  取 a = π/4
  则
  X^2 - Y^2 = (xcos(π/4) + ysin(π/4))^2 -(xsin(π/4) - ycos(π/4))^2
  = (√2/2 x + √2/2 y)^2 -(√2/2 x - √2/2 y)^2
  = 4 (√2/2 x) (√2/2 y)
  = 2xy.
  而xy=c
  所以
  X^2/(2c) - Y^2/(2c) = 1 (c>0)
  Y^2/(-2c) - X^2/(-2c) = 1 (c<0)
  由此证得,反比例函数其实就是双曲线的一种形式,.只不过是双曲线在平面直角坐标系内的另一种摆放形式.
3.12 13.双曲线内、上、外
  在双曲线的两侧的区域称为双曲线内,则有x^2/a^2-y^2/b^2>1;
  在双曲线的线上称为双曲线上,则有x^2/a^2-y^2/b^2=1;
  在双曲线所夹的区域称为双曲线外,则有x^2/a^2-y^2/b^2<1。
760575383
2014-02-07 · TA获得超过6553个赞
知道大有可为答主
回答量:2913
采纳率:83%
帮助的人:1217万
展开全部
F1(-c,0)、F2(c,0)是双曲线C:x^2/a^2-y^2/b^2=1(a〉0,b〉0,c^2=a^2+b^2)的2焦点
P(x0,y0)为C上的一点,我们称|PF1|、|PF2|为双典线的焦半径,则|PF1|=±(a+ex0),|PF2|=±(ex0-a),(e=c/a为离心率).当点在双曲线的右支上时取“+”.当点在双曲线的左支上时取“-”.
在平面直角坐标系中,二元二次方程h(x,y)=ax^2+bxy+cy^2+dx+ey+f=0满足以下条件时,其图像为双曲线。   
1. a,b,c不都是0。  
 2. b^2 - 4ac > 0。  

 在高中的解析几何中,学到的是双曲线的中心在原点,图像关于x,y轴对称的情形。这时双曲线的方程退化为:x^2/a^2 - y^2/b^2 = 1。   
双曲线的简单几何性质
1、轨迹上一点的取值范围:x≥a,x≤-a(焦点在x轴上)或者y≥a,y≤-a(焦点在y轴上)。    2、对称性:关于坐标轴和原点对称。  
3、顶点:A(-a,0), A'(a,0)。同时 AA'叫做双曲线的实轴且∣AA'│=2a.   B(0,-b), B'(0,b)。同时 BB'叫做双曲线的虚轴且│BB'│=2b.   
4、渐近线:    
焦点在x轴:y=±(b/a)x.   
焦点在y轴:y=±(a/b)x.
圆锥曲线ρ=ep/1-ecosθ当e>1时,表示双曲线。其中p为焦点到准线距离,θ为弦与X轴夹角   令1-ecosθ=0可以求出θ,这个就是渐近线的倾角。θ=arccos(1/e)   令θ=0,得出ρ=ep/1-e, x=ρcosθ=ep/1-e   令θ=PI,得出ρ=ep/1+e ,x=ρcosθ=-ep/1+e   这两个x是双曲线定点的横坐标。   求出他们的中点的横坐标(双曲线中心横坐标)   x=[(ep/1-e)+(-ep/1+e)]/2   (注意化简一下)   直线ρcosθ=[(ep/1-e)+(-ep/1+e)]/2   是双曲线一条对称轴,注意是不与曲线相交的对称轴。   将这条直线顺时针旋转PI/2-arccos(1/e)角度后就得到渐近线方程,设旋转后的角度是θ’   则θ’=θ-[PI/2-arccos(1/e)]   则θ=θ’+[PI/2-arccos(1/e)]   代入上式:   ρcos{θ’+[PI/2-arccos(1/e)]}=[(ep/1-e)+(-ep/1+e)]/2   即:ρsin[arccos(1/e)-θ’]=[(ep/1-e)+(-ep/1+e)]/2   现在可以用θ取代式中的θ’了   得到方程:ρsin[arccos(1/e)-θ]=[(ep/1-e)+(-ep/1+e)]/2   现证明双曲线x^2/a^2-y^/b^2=1 上的点在渐近线中    设M(x,y)是双曲线在第一象限的点,则   y=(b/a)√(x^2-a^2) (x>a)   因为x^2-a^2<x^2,所以y=(b/a)√(x^2-a^2)<b/a√x^2=bx/a   即y<bx/a   所以,双曲线在第一象限内的点都在直线y=bx/a下方   根据对称性第二、三、四象限亦如此   5、离心率:   第一定义: e=c/a 且e∈(1,+∞).   第二定义:双曲线上的一点P到定点F的距离│PF│ 与 点P到定直线(相应准线)的距离d 的比等于双曲线的离心率e.   d点│PF│/d线(点P到定直线(相应准线)的距离)=e   6、双曲线焦半径公式(圆锥曲线上任意一点P(x,y)到焦点距离)   左焦半径:r=│ex+a│    右焦半径:r=│ex-a│   7、等轴双曲线   一双曲线的实轴与虚轴长相等 即:2a=2b 且 e=√2   这时渐近线方程为:y=±x(无论焦点在x轴还是y轴)   8、共轭双曲线   双曲线S'的实轴是双曲线S的虚轴 且 双曲线S'的虚轴是双曲线S的实轴时,称双曲线S'与双曲线S为共轭双曲线。   几何表达:S:(x^2/a^2)-(y^2/b^2)=1 S':(y^2/b^2)-(x^2/a^2)=1   
特点:(1)共渐近线   (2)焦距相等   (3)两双曲线的离心率平方后的倒数相加等于1   9、准线: 焦点在x轴上:x=±a^2/c   焦点在y轴上:y=±a^2/c   10、通径长:(圆锥曲线(除圆外)中,过焦点并垂直于轴的弦)   d=2b^2/a    11、过焦点的弦长公式:   d=2pe/(1-e^2cos^2θ)   12、弦长公式:   d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下:   由 直线的斜率公式:k = (y1 - y2) / (x1 - x2)   得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k   分别代入两点间的距离公式:|AB| = √[(x1 - x2)² + (y1 - y2)² ]   稍加整理即得:   |AB| = |x1 - x2|√(1 + k²) 或 |AB| = |y1 - y2|√(1 + 1/k²)   ·双曲线的标准公式与反比例函数    X^2/a^2 - Y^2/b^2 = 1(a>0,b>0)   而反比例函数的标准型是 xy = c (c ≠ 0)   但是反比例函数确实是双曲线函数经过旋转得到的   因为xy = c的对称轴是 y=x, y=-x 而X^2/a^2 - Y^2/b^2 = 1的对称轴是x轴,y轴   所以应该旋转45度   设旋转的角度为 a (a≠0,顺时针)   (a为双曲线渐进线的倾斜角)   则有   X = xcosa + ysina   Y = - xsina + ycosa   取 a = π/4   则   X^2 - Y^2 = (xcos(π/4) + ysin(π/4))^2 -(xsin(π/4) - ycos(π/4))^2   = (√2/2 x + √2/2 y)^2 -(√2/2 x - √2/2 y)^2   = 4 (√2/2 x) (√2/2 y)   = 2xy.   而xy=c   所以   X^2/(2c) - Y^2/(2c) = 1 (c>0)   Y^2/(-2c) - X^2/(-2c) = 1 (c<0)   由此证得,反比例函数其实就是双曲线函数.只不过是双曲线在平面直角坐标系内的另一种摆放形式.编辑本段·双曲线焦点三角形面积公式
  若∠F1PF2=θ,   则S△F1PF2=b^2;·cot(θ/2)   ·例:已知F1、F2为双曲线C:x^2;-y^;=1的左右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为多   少?   解:由双曲线焦点三角形面积公式得S△F1PF2=b^2;·cot(θ/2)=1×cot30°,   设P到x轴的距离为h,则S△F1PF2=½×F1F2×h=½2√2×h=√3, h=√6/2
·双曲线参数方程
  双曲线的参数方程:x=a secθ (正割) y=b tanθ ( a为实半轴长, b为虚半轴长, θ为参数。)
追问
谢了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式