如图,等腰三角形ABC中,AB=AC,AB的垂直平分线交直线BC于D(1)当∠A为直角时,(如图①
如图,等腰三角形ABC中,AB=AC,AB的垂直平分线交直线BC于D(1)当∠A为直角时,(如图①)求证:AB²=BD·BC(2)当∠A为钝角或锐角时结论是否改...
如图,等腰三角形ABC中,AB=AC,AB的垂直平分线交直线BC于D(1)当∠A为直角时,(如图①)求证:AB²=BD·BC(2)当∠A为钝角或锐角时结论是否改成立,请说明里有
展开
4个回答
展开全部
连接AD,可知AD⊥BC,且AD=BD=CD,S△ABC=BC×AD×1/2=AB×AC×1/2,AD=BD,AB=AC,代入上式,有AB²=BD*BC,得证;
∠A为钝角时,作AF⊥BC于点F,可知F是BC中点,连接AD,作BH⊥CA延长线于点H,∠BAH=2∠B,∠ADF=2∠B,AF=AD×sin2∠B①,BH=AB×sin2∠B②,S△ABC=BC×AF×1/2=AC×BH×1/2,将①②两式代入上式,得到BD*BC=AB²,∴∠A为钝角时仍成立;
当∠A为锐角时,连接AD,可证△BDE≌△ADE,∴∠B=∠DAB,∴△DAB是等腰三角形,∴∠B=∠ACB=∠BAD,∴△ABC∽△DAB,∴BC/AB=AB/BD,∴AB²=BC*BD,∴∠A为锐角时,结论仍然成立
∠A为钝角时,作AF⊥BC于点F,可知F是BC中点,连接AD,作BH⊥CA延长线于点H,∠BAH=2∠B,∠ADF=2∠B,AF=AD×sin2∠B①,BH=AB×sin2∠B②,S△ABC=BC×AF×1/2=AC×BH×1/2,将①②两式代入上式,得到BD*BC=AB²,∴∠A为钝角时仍成立;
当∠A为锐角时,连接AD,可证△BDE≌△ADE,∴∠B=∠DAB,∴△DAB是等腰三角形,∴∠B=∠ACB=∠BAD,∴△ABC∽△DAB,∴BC/AB=AB/BD,∴AB²=BC*BD,∴∠A为锐角时,结论仍然成立
展开全部
连接AD,可知AD⊥BC,且AD=BD=CD,S△ABC=BC×AD×1/2=AB×AC×1/2,AD=BD,AB=AC,代入上式,有AB²=BD*BC,得证;
∠A为钝角时,作AF⊥BC于点F,可知F是BC中点,连接AD,作BH⊥CA延长线于点H,∠BAH=2∠B,∠ADF=2∠B,AF=AD×sin2∠B①,BH=AB×sin2∠B②,S△ABC=BC×AF×1/2=AC×BH×1/2,将①②两式代入上式,得到BD*BC=AB²,∴∠A为钝角时仍成立;
当∠A为锐角时,连接AD,可证△BDE≌△ADE,∴∠B=∠DAB,∴△DAB是等腰三角形,∴∠B=∠ACB=∠BAD,∴△ABC∽△DAB,∴BC/AB=AB/BD,∴AB²=BC*BD,∴∠A为锐角时,结论仍然成立
∠A为钝角时,作AF⊥BC于点F,可知F是BC中点,连接AD,作BH⊥CA延长线于点H,∠BAH=2∠B,∠ADF=2∠B,AF=AD×sin2∠B①,BH=AB×sin2∠B②,S△ABC=BC×AF×1/2=AC×BH×1/2,将①②两式代入上式,得到BD*BC=AB²,∴∠A为钝角时仍成立;
当∠A为锐角时,连接AD,可证△BDE≌△ADE,∴∠B=∠DAB,∴△DAB是等腰三角形,∴∠B=∠ACB=∠BAD,∴△ABC∽△DAB,∴BC/AB=AB/BD,∴AB²=BC*BD,∴∠A为锐角时,结论仍然成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-02-16
展开全部
5个精密度一日欧普哦跑回家媒体哦
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询