求曲线y=xe^(-x)的凹凸区间及拐点
展开全部
设y=xe^(x/2)
y‘ = x'e^(x/2) + x[e^(x/2)]' = e^(x/2) + xe^(x/2) *(1/2) = e^(x/2) (1 + x/2)
y'' = [e^(x/2)]'(1 + x/2) + e^(x/2) (1+ x/2)'
= (1/2)e^(x/2)(1 + x/2 + 1)
= (1/2)e^(x/2)(2 + x/2) = 0
2 + x/2 = 0
x = -4
y‘ = x'e^(x/2) + x[e^(x/2)]' = e^(x/2) + xe^(x/2) *(1/2) = e^(x/2) (1 + x/2)
y'' = [e^(x/2)]'(1 + x/2) + e^(x/2) (1+ x/2)'
= (1/2)e^(x/2)(1 + x/2 + 1)
= (1/2)e^(x/2)(2 + x/2) = 0
2 + x/2 = 0
x = -4
追问
看清题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询