已知函数f(x)=x^2+|x-a|,a为实常数.问:当a=1时,解不等式f(x)<3;当x∈[
已知函数f(x)=x^2+|x-a|,a为实常数.问:当a=1时,解不等式f(x)<3;当x∈[1,2]时,求f(x)的最小值...
已知函数f(x)=x^2+|x-a|,a为实常数.问:当a=1时,解不等式f(x)<3;当x∈[1,2]时,求f(x)的最小值
展开
3个回答
展开全部
f(x)<3
x^2+|x-1|<3
1)当x>=1时,x^2+x-4<0
(-1-根号17)/2<x<(-1+根号17)/2
此时解集为:1<=x<(-1+根号17)/2
2)当x<1时,x^2-x-2<0
-1<x<2
此时解集为:-1<x<1
当a=1时,解不等式f(x)<3的解集为
-1<x<(-1+根号17)/2
当x∈[1,2]时,f(x)=x^2+x-a或x^2-x+a
1)f(x)=x^2+x-a=(x+1/2)^2-a-1/4
f(x)的最小值为f(1)=2-a (a<=1)
2)f(x)=x^2-x+a=(x-1/2)^2+a-1/4
f(x)的最小值为f(1)=a (a>1)
当x∈[1,2]时,f(x)的最小值为2-a或a
x^2+|x-1|<3
1)当x>=1时,x^2+x-4<0
(-1-根号17)/2<x<(-1+根号17)/2
此时解集为:1<=x<(-1+根号17)/2
2)当x<1时,x^2-x-2<0
-1<x<2
此时解集为:-1<x<1
当a=1时,解不等式f(x)<3的解集为
-1<x<(-1+根号17)/2
当x∈[1,2]时,f(x)=x^2+x-a或x^2-x+a
1)f(x)=x^2+x-a=(x+1/2)^2-a-1/4
f(x)的最小值为f(1)=2-a (a<=1)
2)f(x)=x^2-x+a=(x-1/2)^2+a-1/4
f(x)的最小值为f(1)=a (a>1)
当x∈[1,2]时,f(x)的最小值为2-a或a
展开全部
已知函数f(x)=x²+|x-a|,a为实常数.问:当a=1时,解不等式f(x)<3;当x∈[1,2]时,求f(x)的最小值
解:(1)。当a=1时,f(x)=x²+|x-1|<3;
当x≦1时原不等式变为x²-(x-1)=x²-x+1<3,即有x²-x-2=(x-2)(x+1)<0,得-1<x<2;
故-1<x≦1为此段的解............①;
当x≧1时原不等式变为x²+x-1<3,即有x²+x-4<0,得(1-√17)/2<x<(1+√17)/2;故1≦x<(1+√17)/2为
此段的解..........②
①∪②={x∣-1<x<(1+√17)/2}为原不等式的解。
(2)。当x∈[1,2]时,f(x)=x²+x-1=(x+1/2)²-1/4-1=(x+1/2)²-5/4,对称轴x=-1/2在区间[1,2]的左边,故当x∈[1,2]时minf(x)=f(1)=1.
解:(1)。当a=1时,f(x)=x²+|x-1|<3;
当x≦1时原不等式变为x²-(x-1)=x²-x+1<3,即有x²-x-2=(x-2)(x+1)<0,得-1<x<2;
故-1<x≦1为此段的解............①;
当x≧1时原不等式变为x²+x-1<3,即有x²+x-4<0,得(1-√17)/2<x<(1+√17)/2;故1≦x<(1+√17)/2为
此段的解..........②
①∪②={x∣-1<x<(1+√17)/2}为原不等式的解。
(2)。当x∈[1,2]时,f(x)=x²+x-1=(x+1/2)²-1/4-1=(x+1/2)²-5/4,对称轴x=-1/2在区间[1,2]的左边,故当x∈[1,2]时minf(x)=f(1)=1.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询