求内接于半径为a的球且有最大体积的长方体用拉格朗日乘数法
展开全部
V=xyz
x^2+y^2+z^2=4a^2
F(x,y,z)=xyz+λ(x^2+y^2+z^2-4a^2)
所有F方程的偏微分设为零,得到一个方程组:
yz+2λx=0
xz+2λy=0
xy+2λz=0
而:x^2+y^2+z^2=4a^2
解方程组,得:
x=y=z=(2/3)(根号3)a
最大体积=xyz=(8/9)(根号3)a^3
以上回答你满意么?
x^2+y^2+z^2=4a^2
F(x,y,z)=xyz+λ(x^2+y^2+z^2-4a^2)
所有F方程的偏微分设为零,得到一个方程组:
yz+2λx=0
xz+2λy=0
xy+2λz=0
而:x^2+y^2+z^2=4a^2
解方程组,得:
x=y=z=(2/3)(根号3)a
最大体积=xyz=(8/9)(根号3)a^3
以上回答你满意么?
追问
为什么是x^+y^2+z^=4a^2而不是x^+y^2+z^=a^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询