线性代数怎么学,感觉看不懂书

 我来答
百度网友1a25ae5
2014-10-17 · TA获得超过502个赞
知道小有建树答主
回答量:129
采纳率:0%
帮助的人:140万
展开全部
是比较抽象
建议将其理解为高维数学,N维向量不好理解,但二维和三维向量还是好理解的,然后推广到N维。
在二维或三维中向量中,线性相关即平行或共面,线性无关的向量才能构成一组基。秩的概念相当于向量组的任意线性组合所得到的向量集合的维度,如两个三维向量若线性相关,则它们的线性组合表示的向量只能与它们平行,秩为1;若线性无关,秩为2,那么它们的线性组合可以表示与它们共面的任意向量;若三个三维向量线性无关,秩为3,那么它们的线性组合就可以表示三维空间中的任意向量,这三个三维向量就可以作为三维空间的一组基。
然后再推广到高维向量。
其他方面的知识也可以类似去理解,理解了之后就感觉没那么难了。
将矩阵理解成线性方程组,也可理解成多个行向量或列向量组成的。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式