用分部积分法求下列不定积分,要有详细过程,谢谢了。
展开全部
(1)
∫xarctanx dx
=(1/2)∫arctanx d(x^2)
=(1/2)x^2.arctanx -(1/2)∫x^2/(1+x^2) dx
=(1/2)x^2.arctanx -(1/2)∫dx + (1/2)∫dx /(1+x^2)
=(1/2)x^2.arctanx -(1/2)x + (1/2)arctanx + C
(3)
∫ (secx)^3dx=∫ secxdtanx
= secx.tanx - ∫ (tanx)^2.secx dx
= secx.tanx - ∫ [(secx)^2-1].secx dx
2∫ (secx)^3dx =secx.tanx + ∫ secx dx
=secx.tanx + ln|secx+tanx|
∫ (secx)^3dx = (1/2) [secx.tanx + ln|secx+tanx|] + C
(5)
∫xln(x^2+1) dx
=(1/2)∫ln(x^2+1) d(x^2)
=(1/2)x^2.ln(x^2+1) - ∫x^3/(x^2+1) dx
=(1/2)x^2.ln(x^2+1) - ∫ [x(x^2+1) -x ]/(x^2+1) dx
=(1/2)x^2.ln(x^2+1) - ∫ xdx + (1/2)∫ 2x/(x^2+1) dx
=(1/2)x^2.ln(x^2+1) - (1/2) x^2 + (1/2)ln|x^2+1| + C
∫xarctanx dx
=(1/2)∫arctanx d(x^2)
=(1/2)x^2.arctanx -(1/2)∫x^2/(1+x^2) dx
=(1/2)x^2.arctanx -(1/2)∫dx + (1/2)∫dx /(1+x^2)
=(1/2)x^2.arctanx -(1/2)x + (1/2)arctanx + C
(3)
∫ (secx)^3dx=∫ secxdtanx
= secx.tanx - ∫ (tanx)^2.secx dx
= secx.tanx - ∫ [(secx)^2-1].secx dx
2∫ (secx)^3dx =secx.tanx + ∫ secx dx
=secx.tanx + ln|secx+tanx|
∫ (secx)^3dx = (1/2) [secx.tanx + ln|secx+tanx|] + C
(5)
∫xln(x^2+1) dx
=(1/2)∫ln(x^2+1) d(x^2)
=(1/2)x^2.ln(x^2+1) - ∫x^3/(x^2+1) dx
=(1/2)x^2.ln(x^2+1) - ∫ [x(x^2+1) -x ]/(x^2+1) dx
=(1/2)x^2.ln(x^2+1) - ∫ xdx + (1/2)∫ 2x/(x^2+1) dx
=(1/2)x^2.ln(x^2+1) - (1/2) x^2 + (1/2)ln|x^2+1| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询