函数f(x)=2x和g(x)=x3的图象的示意图如图所示,设两函数的图象交于点 A(x1,y1),B(x2,y2),且x
函数f(x)=2x和g(x)=x3的图象的示意图如图所示,设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(I)请指出示意图中曲线C1,C2分别对应...
函数f(x)=2x和g(x)=x3的图象的示意图如图所示,设两函数的图象交于点 A(x1,y1),B(x2,y2),且x1<x2.(I)请指出示意图中曲线C1,C2分别对应哪一个函数?(II)证明:x1∈[1,2],且x2∈[9,10];(III)结合函数图象的示意图,判断f(6),g(6),f(2011),g(2011)的大小,并按从小到大的顺序排列.
展开
1个回答
展开全部
解答:解:(I)C1对应的函数为g(x)=x3,C2对应的函数为f(x).
(II)证明:
令φ(x)=f(x)-g(x)=2x-x3,则x1,x2为函数φ(x)的零点,
由于φ(1)=1>0,φ(2)=-4<0,φ(9)=29-93<0,φ(10)=210-103>0,
所以方程φ(x)=f(x)-g(x)的两个零点x1∈(1,2),x2∈(9,10)
∴x1∈[1,2],x2∈[9,10]
(III)从图象上可以看出,当x1<x<x2时,f(x)<g(x),
∴f(6)<g(6).(9分)
当x>x2时,f(x)>g(x),
∴g(2011)<f(2011),(11分)
∵g(6)<g(2011),
∴f(6)<g(6)<g(2011)<f(2011).(12分)
(II)证明:
令φ(x)=f(x)-g(x)=2x-x3,则x1,x2为函数φ(x)的零点,
由于φ(1)=1>0,φ(2)=-4<0,φ(9)=29-93<0,φ(10)=210-103>0,
所以方程φ(x)=f(x)-g(x)的两个零点x1∈(1,2),x2∈(9,10)
∴x1∈[1,2],x2∈[9,10]
(III)从图象上可以看出,当x1<x<x2时,f(x)<g(x),
∴f(6)<g(6).(9分)
当x>x2时,f(x)>g(x),
∴g(2011)<f(2011),(11分)
∵g(6)<g(2011),
∴f(6)<g(6)<g(2011)<f(2011).(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询