已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(Ⅰ)求数列{an}
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)记Tn...
已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(Ⅰ)求数列{an}与{bn}的通项公式;(Ⅱ)记Tn=anb1+an-1b2+an-2b3+…+a1bn,求Tn.
展开
展开全部
(Ⅰ)设等差数列的公差为d,等比数列的公比为q,
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由条件a4+b4=27,s4-b4=10,
得方程组
,
解得
,
故an=3n-1,bn=2n,n∈N*.
(Ⅱ)方法一,由(Ⅰ)得,Tn=2an+22an-1+23an-2+…+2na1; ①;
2Tn=22an+23an-1+…+2na2+2n+1a1; ②;
由②-①得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+2
=
+2n+2-6n+2
=10×2n-6n-10.(n∈N*).
方法二:数学归纳法,
③当n=1时,T1+12=a1b1+12=16,-2a1+10b1=16,故等式成立,
④假设当n=k时等式成立,即Tk+12=-2ak+10bk,
则当n=k+1时有,
Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1
=ak+1b1+q(akb1+ak-1b2+…+a1bk)
=ak+1b1+qTk
=ak+1b1+q(-2ak+10bk-12)
=2ak+1-4(ak+1-3)+10bk+1-24
=-2ak+1+10bk+1-12.
即Tk+1+12=-2ak+1+10bk+1,因此n=k+1时等式成立.
③④对任意的n∈N*,Tn+12=-2an+10bn成立.
∴Tn=-2an+10bn-12=10×2n-6n-10.(n∈N*).
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由条件a4+b4=27,s4-b4=10,
得方程组
|
解得
|
故an=3n-1,bn=2n,n∈N*.
(Ⅱ)方法一,由(Ⅰ)得,Tn=2an+22an-1+23an-2+…+2na1; ①;
2Tn=22an+23an-1+…+2na2+2n+1a1; ②;
由②-①得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+2
=
12(1?2n?1) |
1?2 |
=10×2n-6n-10.(n∈N*).
方法二:数学归纳法,
③当n=1时,T1+12=a1b1+12=16,-2a1+10b1=16,故等式成立,
④假设当n=k时等式成立,即Tk+12=-2ak+10bk,
则当n=k+1时有,
Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1
=ak+1b1+q(akb1+ak-1b2+…+a1bk)
=ak+1b1+qTk
=ak+1b1+q(-2ak+10bk-12)
=2ak+1-4(ak+1-3)+10bk+1-24
=-2ak+1+10bk+1-12.
即Tk+1+12=-2ak+1+10bk+1,因此n=k+1时等式成立.
③④对任意的n∈N*,Tn+12=-2an+10bn成立.
∴Tn=-2an+10bn-12=10×2n-6n-10.(n∈N*).
展开全部
(1)设数列{an}的公差是d,{bn}的公比是q,依题意
2+3d+2q^3=27,①
8+6d-2q^3=10,②
①+②,10+9d=37,d=3,
代入①,11+2q^3=27,q^3=8,q=2.
∴an=2+3(n-1)=3n-1,
bn=2^n.
(2)Tn=2*2+5*2^2+8*2^3+……+(3n-1)*2^n,③
∴2Tn=
2*2^2+5*2^3+……+(3n-4)*2^n+(3n-1)*2^(n+1),④
③-④,-Tn=4+3(2^2+2^3+……+2^n)-(3n-1)*2^(n+1)
=4-3[2^2-2^(n+1)]-(3n-1)*2^(n+1),
=-8-(3n-4)*2^(n+1),
∴Tn=8+(3n-4)*2^(n+1),
∴Tn-8=a<n-1>b<n+1>.
2+3d+2q^3=27,①
8+6d-2q^3=10,②
①+②,10+9d=37,d=3,
代入①,11+2q^3=27,q^3=8,q=2.
∴an=2+3(n-1)=3n-1,
bn=2^n.
(2)Tn=2*2+5*2^2+8*2^3+……+(3n-1)*2^n,③
∴2Tn=
2*2^2+5*2^3+……+(3n-4)*2^n+(3n-1)*2^(n+1),④
③-④,-Tn=4+3(2^2+2^3+……+2^n)-(3n-1)*2^(n+1)
=4-3[2^2-2^(n+1)]-(3n-1)*2^(n+1),
=-8-(3n-4)*2^(n+1),
∴Tn=8+(3n-4)*2^(n+1),
∴Tn-8=a<n-1>b<n+1>.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询