在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线

在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线交于点F。(1)求证:BD=BF;(2)若BC=... 在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长,与BC的延长线交于点F。(1)求证:BD=BF;(2)若BC=6,AD=4,求⊙O的面积。 展开
 我来答
泣静枫u4
推荐于2016-11-05 · 超过53用户采纳过TA的回答
知道答主
回答量:118
采纳率:0%
帮助的人:135万
展开全部
证明:(1)连接OE,
∵AC切⊙O于E,
∴OE⊥AC,
又∠ACB=90°
即BC⊥AC,
∴OE∥BC,
∴∠OED=∠F,
又OD=OE,
∴∠ODE=∠OED,
∴∠ODE=∠F,
∴BD=BF;
(2)设⊙O半径为r,由OE∥BC得△AOE∽△ABC,


∴r 2 -r-12=0,
解之得r 1 =4,r 2 =-3(舍),
∴S ⊙O =πr 2 =16π。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式