给出下列命题:①如果函数f(x)对任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,则函

给出下列命题:①如果函数f(x)对任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,则函数f(x)在R上是减函数;②如果函数f(x)对... 给出下列命题:①如果函数f(x)对任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,则函数f(x)在R上是减函数;②如果函数f(x)对任意的x∈R,都满足f(x)=-f(2+x),那么函数f(x)是周期函数;③函数y=f(x)与函数y=f(x+1)-2的图象一定不能重合;④对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0,则x<0时,f′(x)>g′(x).其中正确的命题是 ______.(把你认为正确命题的序号都填上) 展开
 我来答
搁浅丶狛
推荐于2016-07-18 · 超过55用户采纳过TA的回答
知道答主
回答量:105
采纳率:0%
帮助的人:138万
展开全部
(1)由题意可知,
对任意的x1,x2∈R,且x1≠x2
当x1>x2时,
f(x1)<f(x2),
当x1<x2时,
f(x1)>f(x2),
可知函数随着x的递增而递减,递减而递增,
因而可知函数f(x)在R上是减函数,故此命题正确;
(2)由题意知f(x)=-f(2+x),
因而可知f(x+4)=-f(x+2)=f(x),
因而可知函数的周期为4,故此命题正确.
(3)根据函数的平移,
可知函数y=f(x+1)-2先向左平移1个单位,再向上平移2个单位,
存在函数f(x)=2x使得图象可以重合,故此命题错误.
(4)由f(-x)=-f(x)
且x>0时,f′(x)>0,
知函数f(x)关于原点中心对称且单调递增,
由g(-x)=g(x)
且x>0时,g′(x)>0,
可知函数g(x)关于y轴对称且先单调递增后单调递减,
因此可判断出x<0时,f′(x)>g′(x),故此命题正确,
故答案为:①②④.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式