如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上

如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量... 如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系是 ;(2)将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若BC=DE=4,当AE取最大值时,求AF的值. 展开
 我来答
满语苼R9
推荐于2017-09-02 · TA获得超过129个赞
知道答主
回答量:106
采纳率:0%
帮助的人:136万
展开全部
(1)BG=AE,理由见解析;(2)①成立,理由见解析;② .


试题分析:(1)由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论.
(2)①如图2,连接AD,由等腰直角三角形的性质及正方形的性质就可以得出△ADE≌△BDG就可以得出结论;
②由①可知BG=AE,当BG取得最大值时,AE取得最大值,由勾股定理就可以得出结论.
试题解析:(1)BG=AE.理由如下:
如图1,∵△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点,
∴AD⊥BC,BD="CD." ∴∠ADB=∠ADC=90°.
∵四边形DEFG是正方形,∴DE=DG.
在△ADE和△BDG中,∵DC=DB,∠ADC=∠ADB,DE=DG,∴△ADE≌△BDG(SAS).∴BG=AE.
(2)①成立.理由如下:
如图2,连接AD,
∵在Rt△BAC中,D为斜边BC中点,∴AD=BD,AD⊥BC. ∴∠ADG+∠GDB=90°.        
∵四边形EFGD为正方形,∴DE=DG,且∠GDE=90°.∴∠ADG+∠ADE=90°.∴∠BDG=∠ADE.
在△BDG和△ADE中,∵BD=AD,∠BDG=∠ADE,GD=ED,∴△BDG≌△ADE(SAS).∴DG=AE.

②∵BG=AE,
∴当BG取得最大值时,AE取得最大值.
如图3,当旋转角为270°时,BG=AE.
∵BC=DE=4,∴BG=2+4=6.∴AE=6.
在Rt△AEF中,由勾股定理,得 .
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式