求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程

求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程.... 求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆的方程. 展开
 我来答
阿瑟00C29
2014-09-25 · TA获得超过266个赞
知道答主
回答量:178
采纳率:0%
帮助的人:130万
展开全部
∵圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0,
∴两圆相减可得公共弦方程为l:4x+3y-2=0
又∵圆C1:x2+y2-12x-2y-13=0的圆心坐标为(6,1),半径为5
2

圆C2:x2+y2+12x+16y-25=0的圆心坐标为(-6,-8),半径为5
5

∴C1C2的方程为3x-4y-14=0
∴联立
4x+3y?2=0
3x?4y?14=0
可得公共弦为直径的圆的圆心坐标为(2,-2),
∵(6,1)到公共弦的距离为5
∴公共弦为直径的圆的半径为5
∴公共弦为直径的圆的方程为(x-2)2+(y+2)2=25.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式