如图RT三角形ABC中,角C=90度,角A的平分线AD交BC边于D,求证AC^2/AD^2=BC/2BD 20
2个回答
2014-10-26
展开全部
2
证:
AC^2/AD^2= cos^2 ∠CAD =(1+cos2∠CAD)/2= 1/2 +cos∠BAC
=1/2 + AC/AB
而 BC/2BD=(1/2)·(BD+CD)/BD= 1/2 +CD/BD
由三角形角平分线定理,有:
AC/CD=AB/BD ;
则 AC/AB = CD/BD;
则: 1/2 + AC/AB = 1/2 +CD/BD ;
即
AC^2/AD^2=BC/2BD
这里用到的是三角函数的倍角公式;也可以完全用平面几何的方法如下:
作DE⊥AD;且DE交AC于E;
则 ∠BDE +∠CDA=90度;
而 ∠CAD +∠CDA=90度,则 ∠BDE =∠CAD .
于是又有∠BDE =∠BAD;
∠B共用,因此,△BDE∽△ABD;
则BD/AB=DE/AD;
而明显有:Rt△ACD∽Rt△ADE;
则 DE/AD = CD/AC;
则BD/AB=CD/AC;
→AB/BD=AC/CD ;
→AB/BD +1 =AC/CD +1 ;
→(AB+BD)/BD =(AC+BD)/CD ;
过点D做DF垂直AB于F ∠DFA=∠DFB=90度
因为AD平分∠CAD
所以∠CAD=∠FAD
又∠ACB=∠DFA=90°
AD=AD
所以△ACD全等于△AFD
所以AC=AF CD=CF
因为AC=BC,∠ACB=90°
所以∠ABC=45°
因为∠DFB=90
所以△BFD是等腰直角三角形
所以DF=BF
所以DF=BF=CD
因为AF+FB=AB
AF=AC
CD=DF=FB
所以AC+CD=AB
则:(AB+BD)/BD =AB/CD ;
(AC+2BD)/BD =AB/CD ;
则AC/AE=BC/2BD
而且: AC/AD=AD/AE;
于是有:AC^2/AD^2=(AC/AD)*(AD/AE)=AC/AE;
证:
AC^2/AD^2= cos^2 ∠CAD =(1+cos2∠CAD)/2= 1/2 +cos∠BAC
=1/2 + AC/AB
而 BC/2BD=(1/2)·(BD+CD)/BD= 1/2 +CD/BD
由三角形角平分线定理,有:
AC/CD=AB/BD ;
则 AC/AB = CD/BD;
则: 1/2 + AC/AB = 1/2 +CD/BD ;
即
AC^2/AD^2=BC/2BD
这里用到的是三角函数的倍角公式;也可以完全用平面几何的方法如下:
作DE⊥AD;且DE交AC于E;
则 ∠BDE +∠CDA=90度;
而 ∠CAD +∠CDA=90度,则 ∠BDE =∠CAD .
于是又有∠BDE =∠BAD;
∠B共用,因此,△BDE∽△ABD;
则BD/AB=DE/AD;
而明显有:Rt△ACD∽Rt△ADE;
则 DE/AD = CD/AC;
则BD/AB=CD/AC;
→AB/BD=AC/CD ;
→AB/BD +1 =AC/CD +1 ;
→(AB+BD)/BD =(AC+BD)/CD ;
过点D做DF垂直AB于F ∠DFA=∠DFB=90度
因为AD平分∠CAD
所以∠CAD=∠FAD
又∠ACB=∠DFA=90°
AD=AD
所以△ACD全等于△AFD
所以AC=AF CD=CF
因为AC=BC,∠ACB=90°
所以∠ABC=45°
因为∠DFB=90
所以△BFD是等腰直角三角形
所以DF=BF
所以DF=BF=CD
因为AF+FB=AB
AF=AC
CD=DF=FB
所以AC+CD=AB
则:(AB+BD)/BD =AB/CD ;
(AC+2BD)/BD =AB/CD ;
则AC/AE=BC/2BD
而且: AC/AD=AD/AE;
于是有:AC^2/AD^2=(AC/AD)*(AD/AE)=AC/AE;
追问
可是那个不是等腰的
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询