如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证

如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.... 如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形. 展开
 我来答
北觅丹qo
推荐于2016-04-01 · TA获得超过238个赞
知道答主
回答量:139
采纳率:0%
帮助的人:140万
展开全部
证明:∵∠ACB=90°,AE平分∠BAC,EH⊥AB,∴CE=EH,
在Rt△ACE和Rt△AHE中,∵AE=AE,CE=EH,
∴Rt△ACE≌Rt△AHE(HL)。∴AC=AH。
∵AE平分∠CAB,∴∠CAF=∠HAF。
在△CAF和△HAF中,∵AC=AH,∠CAF=∠HAF,AF=AF,
∴△CAF≌△HAF(SAS)。∴∠ACD=∠AHF。
∵CD⊥AB,∠ACB=90°,∴∠CDA=∠ACB=90°。∴∠B+∠CAB=90°,∠CAB+∠ACD=90°。
∴∠ACD=∠B=∠AHF。∴FH∥CE。
∵CD⊥AB,EH⊥AB,∴CF∥EH。
∴四边形CFHE是平行四边形。
∵CE=EH,∴四边形CFHE是菱形。


试题分析:求出CE=EH,AC=AH,证△CAF≌△HAF,推出∠ACD=∠AHF,求出∠B=∠ACD=∠FHA,推出HF∥CE,推出CF∥EH,得出平行四边形CFHE,根据菱形判定推出即可。 
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式