如图.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1

如图.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+O... 如图.设BC是△ABC的最长边,在此三角形内部任选一点O,AO,BO,CO分别交对边于A′,B′,C′.证明:(1)OA′+OB′+OC′<BC;(2)OA′+OB′+OC′≤max{AA′,BB′,CC′}. 展开
 我来答
西婷燕9
2014-10-08 · 超过70用户采纳过TA的回答
知道答主
回答量:115
采纳率:0%
帮助的人:128万
展开全部
证明:(1)过点O作OX,OY分别平行于边AB,AC,交边BC于X,Y点,再过X,Y分别作XS,YT平行于CC′和BB′交AB,AC于S,T,由于△OXY∽△ABC,所以XY是△OXY的最大边,所以OA′<max{OX,OY}≤XY,
又△BXS∽△BCC′,而BC是△BCC′中的最大边,从而BX也是△BXS中的最大边,而且SXOC′是平行四边形,
所以BX>XS=OC′,
同理CY>OB′,
所以OA′+OB′+OC′<XY+BX+CY=BC,
OA
AA
=x,
OB
BB
=y,
OC
CC
=z,
由于x+y+z=
OA
AA
+
OB
BB
+
OC
CC
=1,
所以OA′+OB′+OC′=x?AA′+y?BB′+z?CC′,
≤(x+y+z)max{AA′,BB′,CC′},
=max{AA′,BB′,CC′}.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式