如图,PA、PB分别与⊙O相切于A、B两点,且OP=2,∠APB=60°.若点C在⊙O上,且AC=2,则圆周角∠CAB的度数
如图,PA、PB分别与⊙O相切于A、B两点,且OP=2,∠APB=60°.若点C在⊙O上,且AC=2,则圆周角∠CAB的度数为______....
如图,PA、PB分别与⊙O相切于A、B两点,且OP=2,∠APB=60°.若点C在⊙O上,且AC=2,则圆周角∠CAB的度数为______.
展开
1个回答
展开全部
解:连接AB,
∵PA、PB分别与⊙O相切于A、B两点,且∠APB=60°,
∴∠PAO=∠PBO=90°,∠OPA=
∠APB=30°,
∴∠AOB=360°-∠PAO-∠PBO-∠APB=120°,
∵OA=OB,
∴∠OAB=∠OBA=
=30°,
∵OP=2,
∴OA=
OP=1;
∵AC=
,OA=OC=1,
∴AC2=OA2+OC2,
∴△AOC是直角三角形,
∴∠OAC=45°;
①如图1,若点C在劣弧AB上时,∠CAB=∠OAC-∠OAB=45°-30°=15°;
②如图2,若点C在优弧AB上时,∠CAB=∠OAC+∠OAB=45°+30°=75°.
∴圆周角∠CAB的度数为:15°或75°.
故答案为:15°或75°.
∵PA、PB分别与⊙O相切于A、B两点,且∠APB=60°,
∴∠PAO=∠PBO=90°,∠OPA=
1 |
2 |
∴∠AOB=360°-∠PAO-∠PBO-∠APB=120°,
∵OA=OB,
∴∠OAB=∠OBA=
180°?∠AOB |
2 |
∵OP=2,
∴OA=
1 |
2 |
∵AC=
2 |
∴AC2=OA2+OC2,
∴△AOC是直角三角形,
∴∠OAC=45°;
①如图1,若点C在劣弧AB上时,∠CAB=∠OAC-∠OAB=45°-30°=15°;
②如图2,若点C在优弧AB上时,∠CAB=∠OAC+∠OAB=45°+30°=75°.
∴圆周角∠CAB的度数为:15°或75°.
故答案为:15°或75°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询