已知a>0,函数f(x)=axx2+1+2a,g(x)=alnx-x+a.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:对于任
已知a>0,函数f(x)=axx2+1+2a,g(x)=alnx-x+a.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:对于任意的x1,x2∈(0,e),都有f(x1)>g...
已知a>0,函数f(x)=axx2+1+2a,g(x)=alnx-x+a.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)求证:对于任意的x1,x2∈(0,e),都有f(x1)>g(x2).
展开
1个回答
展开全部
(Ⅰ)解:函数f(x)的定义域为R,f′(x)=
=
,
∵a>0,
∴当x<-1,或x>1时,f′(x)<0;当-1<x<1时,f′(x)>0.
∴f(x)的单调递增区间为(-1,1),单调递减区间为(-∞,-1),(1,+∞).
(Ⅱ)证明:f(x)在区间(0,1)上单调递增,在区间(1,e)上单调递减,
又f(0)=2a,f(e)=
+2a>2a,
∴当x∈(0,e)时,f(x)>2a.
由g(x)=alnx-x+a,可得g′(x)=
?1=
.
∴当a≥e时,函数g(x)在区间(0,e)上是增函数,
∴当x∈(0,e)时,g(x)<g(e)=2a-e<2a.
∴当x∈(0,e)时,
对于任意的x1,x2∈(0,e),都有f(x1)>2a,g(x2)<2a,∴f(x1)>g(x2).
当0<a<e时,函数g(x)在区间(0,a)上是增函数,在区间(a,e)上是减函数,
∴当x∈(0,e)时,g(x)≤g(a)=alna<2a.
∴当x∈(0,e)时,
对于任意的x1,x2∈(0,e),都有f(x1)>2a,g(x2)<2a,所以f(x1)>g(x2).
综上,对于任意的x1,x2∈(0,e),都有f(x1)>g(x2). …(13分)
a(1?x2) |
(x2+1)2 |
a(1?x)(1+x) |
(x2+1)2 |
∵a>0,
∴当x<-1,或x>1时,f′(x)<0;当-1<x<1时,f′(x)>0.
∴f(x)的单调递增区间为(-1,1),单调递减区间为(-∞,-1),(1,+∞).
(Ⅱ)证明:f(x)在区间(0,1)上单调递增,在区间(1,e)上单调递减,
又f(0)=2a,f(e)=
ea |
e2+1 |
∴当x∈(0,e)时,f(x)>2a.
由g(x)=alnx-x+a,可得g′(x)=
a |
x |
a?x |
x |
∴当a≥e时,函数g(x)在区间(0,e)上是增函数,
∴当x∈(0,e)时,g(x)<g(e)=2a-e<2a.
∴当x∈(0,e)时,
对于任意的x1,x2∈(0,e),都有f(x1)>2a,g(x2)<2a,∴f(x1)>g(x2).
当0<a<e时,函数g(x)在区间(0,a)上是增函数,在区间(a,e)上是减函数,
∴当x∈(0,e)时,g(x)≤g(a)=alna<2a.
∴当x∈(0,e)时,
对于任意的x1,x2∈(0,e),都有f(x1)>2a,g(x2)<2a,所以f(x1)>g(x2).
综上,对于任意的x1,x2∈(0,e),都有f(x1)>g(x2). …(13分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询