如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),
如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C(1,-3),一抛物线经过A,E,C三点.(1)求点...
如图1,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D,AD与BC相交于E点,已知:A(-2,-6),C(1,-3),一抛物线经过A,E,C三点.(1)求点E的坐标及此抛物线的表达式;(2)如图2,如果AB位置不变,将DC向右平移k(k>0)个单位,求△AEC的面积S关于k的函数表达式;(3)在第(2)问中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,请说明理由.
展开
1个回答
展开全部
(1)由题意知B(-2,0)、D(1,0),
设直线AD的解析式为y=kx+b,
将A(-2,-6)、D(1,0)的坐标代入,
解得k=2,b=-2,
∴直线BC的解析式为y=-x-2;
同理求得直线AD的解析式为y=2x-2,
解方程组
.
得点E的坐标为(0,-2),
(用其它方法求得点E的坐标可参考得分)
设经过A,E,C三点的此抛物线表达式为y=ax2+bx+c,
则
,
∴
,
∴y=-x2-2.
(2)由题意得D(k+1,0),C(k+1,-3),BD=k+3,
∵AB、CD都垂直于x轴,
∴△ABE∽△DCE,
且SABDC=
(k+3),
作EF⊥AB于F,EG⊥CD于G,则
EF=
(k+3),
EG=
(k+3),
∴SABE+SCDE=
(k+3)
∴S=
(SABDC?SABE?SCDE)=k+3.
(3)由(2)知EF=
(k+3),
∵△ABE∽△DCE,
∴
=
=
,
∵EF∥x轴,
∴
=
,
∴AF=4,BF=2,
当AD⊥BC时,由EF⊥AB得△BEF∽△AFE,
∴EF2=BF?AF=8,
∴EF=2
(负根舍去)
∴
(k+3)=2
,k=3
?3.
设直线AD的解析式为y=kx+b,
将A(-2,-6)、D(1,0)的坐标代入,
解得k=2,b=-2,
∴直线BC的解析式为y=-x-2;
同理求得直线AD的解析式为y=2x-2,
解方程组
|
得点E的坐标为(0,-2),
(用其它方法求得点E的坐标可参考得分)
设经过A,E,C三点的此抛物线表达式为y=ax2+bx+c,
则
|
∴
|
∴y=-x2-2.
(2)由题意得D(k+1,0),C(k+1,-3),BD=k+3,
∵AB、CD都垂直于x轴,
∴△ABE∽△DCE,
且SABDC=
9 |
2 |
作EF⊥AB于F,EG⊥CD于G,则
EF=
2 |
3 |
EG=
1 |
3 |
∴SABE+SCDE=
5 |
2 |
∴S=
1 |
2 |
(3)由(2)知EF=
2 |
3 |
∵△ABE∽△DCE,
∴
AE |
ED |
AB |
DC |
2 |
1 |
∵EF∥x轴,
∴
AF |
FB |
2 |
1 |
∴AF=4,BF=2,
当AD⊥BC时,由EF⊥AB得△BEF∽△AFE,
∴EF2=BF?AF=8,
∴EF=2
2 |
∴
2 |
3 |
2 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询