如图,点A1、A2、A3、…、An在抛物线y=x2图象点B1、B2、B3、…、Bn在y轴上,若△A1B0B1、△A2B1B2、…、

如图,点A1、A2、A3、…、An在抛物线y=x2图象点B1、B2、B3、…、Bn在y轴上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都为等腰直角三角形(点... 如图,点A1、A2、A3、…、An在抛物线y=x2图象点B1、B2、B3、…、Bn在y轴上,若△A1B0B1、△A2B1B2、…、△AnBn-1Bn都为等腰直角三角形(点B0是坐标原点),则△A2012B2011B2012的腰长=2012220122. 展开
 我来答
洛建安2L
2014-09-22 · 超过64用户采纳过TA的回答
知道答主
回答量:123
采纳率:66%
帮助的人:57.6万
展开全部
作A1C⊥y轴,A2E⊥y轴,垂足分别为C、E.
∵△A1BOB1、△A2B1B2都是等腰直角三角形
∴B1C=B0C=DB0=A1D,B2E=B1E
设A1(a,b)∴a=b将其代入解析式y=x2得:
∴a=a2
解得:a=0(不符合题意)或a=1,由勾股定理得:A1B0=
2

∴B1B0=2,
过B1作B1N⊥A2F,设点A(x2,y2
可得A2N=y2-2,B1N=x2=y2-2,
又点A2在抛物线上,所以y2=x22
(x2+2)=x22
解得x2=2,x2=-1(不合题意舍去),
∴A2B1=2
2

同理可得:
A3B2=3
2

A4B3=4
2
   …
∴A2012B2011=2012
2

∴△A2012B2011B2012的腰长为:2012
2

故答案为:2012
2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式