高等数学 求极限
2个回答
展开全部
1. 代入法, 分母极限不为零时使用。先考察分母的极限,分母极限是不为零的常数时即用此法。
【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)
解:lim[x-->√3](x^2-3)/(x^4+x^2+1)
=(3-3)/(9+3+1)=0
【例2】lim[x-->0](lg(1+x)+e^x)/arccosx
解:lim[x-->0](lg(1+x)+e^x)/arccosx
=(lg1+e^0)/arccos0
=(0+1)/1
=1
2. 倒数法,分母极限为零,分子极限为不等于零的常数时使用。
【例3】 lim[x-->1]x/(1-x)
解:∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞
以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞。
3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用。
【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)
解:lim[x-->1](x^2-2x+1)/(x^3-x)
=lim[x-->1](x-1)^2/[x(x^2-1)
=lim[x-->1](x-1)/x
=0
【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)
解:lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)
= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]
= lim[x-->-2]x(x+1) / (x-3)
=-2/5
【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)
解:lim[x-->1](x^2-6x+8)/(x^2-5x+4)
= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]
= lim[x-->1](x-2) /[(x-1)
=∞
【例7】lim[h-->0][(x+k)^3-x^3]/h
解:lim[h-->0][(x+h)^3-x^3]/h
= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h
= lim[h-->0] [(x+h)^2+x(x+h)+h^2]
=2x^2
这实际上是为将来的求导数做准备。
4. 消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用。可利用平方差、立方差、立方和进行有理化。
【例8】lim[x-->0][√1+x^2]-1]/x
解:lim[x-->0][√1+x^2]-1]/x
= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}
= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}
= lim[x-->0] x / [√1+x^2]+1]
=0
【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
解:lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)]
÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}
=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]}
=lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]
=-2
5. 零因子替换法。利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用。常配合利用三角函数公式。
【例10】lim[x-->0]sinax/sinbx
解:lim[x-->0]sinax/sinbx
= lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx)
=1*1*a/b=a/b
【例11】lim[x-->0]sinax/tanbx
解:lim[x-->0]sinax/tanbx
= lim[x-
【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)
解:lim[x-->√3](x^2-3)/(x^4+x^2+1)
=(3-3)/(9+3+1)=0
【例2】lim[x-->0](lg(1+x)+e^x)/arccosx
解:lim[x-->0](lg(1+x)+e^x)/arccosx
=(lg1+e^0)/arccos0
=(0+1)/1
=1
2. 倒数法,分母极限为零,分子极限为不等于零的常数时使用。
【例3】 lim[x-->1]x/(1-x)
解:∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞
以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞。
3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用。
【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)
解:lim[x-->1](x^2-2x+1)/(x^3-x)
=lim[x-->1](x-1)^2/[x(x^2-1)
=lim[x-->1](x-1)/x
=0
【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)
解:lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)
= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]
= lim[x-->-2]x(x+1) / (x-3)
=-2/5
【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)
解:lim[x-->1](x^2-6x+8)/(x^2-5x+4)
= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]
= lim[x-->1](x-2) /[(x-1)
=∞
【例7】lim[h-->0][(x+k)^3-x^3]/h
解:lim[h-->0][(x+h)^3-x^3]/h
= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h
= lim[h-->0] [(x+h)^2+x(x+h)+h^2]
=2x^2
这实际上是为将来的求导数做准备。
4. 消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用。可利用平方差、立方差、立方和进行有理化。
【例8】lim[x-->0][√1+x^2]-1]/x
解:lim[x-->0][√1+x^2]-1]/x
= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}
= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}
= lim[x-->0] x / [√1+x^2]+1]
=0
【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
解:lim[x-->-8][√(1-x)-3]/(2+x^(1/3))
=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)]
÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}
=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]}
=lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]
=-2
5. 零因子替换法。利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用。常配合利用三角函数公式。
【例10】lim[x-->0]sinax/sinbx
解:lim[x-->0]sinax/sinbx
= lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx)
=1*1*a/b=a/b
【例11】lim[x-->0]sinax/tanbx
解:lim[x-->0]sinax/tanbx
= lim[x-
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询