高一数学,求详细的解答过程,
1个回答
展开全部
tan(π+a) = -1/2 tana = -1/2
(1) 原式=(-2cosa+3sina)/(4cosa -sina)
=(-2 +3tana)/(4-tana)
=(-2 - 3/2)/(4+1/2)
=(-7/2)/(9/2)
=-7/9
(2) ∵tana = -1/2 ∴cos²a = (2/根号5)² = 4/5
原式=sin(a - π - 6π) * cos(a + π + 4π)
= sin(a - π)*cos(a + π)
=-sina*(-cosa)
=tana / cos²a
= (-1/2)/(2/根号5)²
=-1/2 * 5/4
=-5/8
(1) 原式=(-2cosa+3sina)/(4cosa -sina)
=(-2 +3tana)/(4-tana)
=(-2 - 3/2)/(4+1/2)
=(-7/2)/(9/2)
=-7/9
(2) ∵tana = -1/2 ∴cos²a = (2/根号5)² = 4/5
原式=sin(a - π - 6π) * cos(a + π + 4π)
= sin(a - π)*cos(a + π)
=-sina*(-cosa)
=tana / cos²a
= (-1/2)/(2/根号5)²
=-1/2 * 5/4
=-5/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询