两道题,求大神解答
展开全部
1.
1/(1*2)+1/(2*3)+......+1/n*(n+1)=?
1/n(n+1)=(1/n)-[1/(n+1)]
1/(1*2)+1/(2*3)+......+1/n*(n+1)=[1-(1/2)]+[(1/2)-(1/3)]+....+[(1/50)-(1/51)]=1-(1/51)
所以,
1-[1(1*2)+1/(2*3)+......+1/50*51]=1/51
2.
(1/4)=(1/3)[1-(1/4)]
(1/28)=(1/3)[(1/4)-(1/7)]
(1/70)=(1/3)[(1/7)-(1/10)]
(1/130)=(1/3)[(1/10)-(1/13)]
原式=(1/3)[1-(1/13)]=(1/3)(12/13)=4/13
1/(1*2)+1/(2*3)+......+1/n*(n+1)=?
1/n(n+1)=(1/n)-[1/(n+1)]
1/(1*2)+1/(2*3)+......+1/n*(n+1)=[1-(1/2)]+[(1/2)-(1/3)]+....+[(1/50)-(1/51)]=1-(1/51)
所以,
1-[1(1*2)+1/(2*3)+......+1/50*51]=1/51
2.
(1/4)=(1/3)[1-(1/4)]
(1/28)=(1/3)[(1/4)-(1/7)]
(1/70)=(1/3)[(1/7)-(1/10)]
(1/130)=(1/3)[(1/10)-(1/13)]
原式=(1/3)[1-(1/13)]=(1/3)(12/13)=4/13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
采纳我就帮你解
追问
SB
追答
操
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询