什么是因数 质数 合数 质因数
因数是整数a除以整数b(b≠0) 的商正好是整数而没有余数。
质数是在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。
合数是自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。
在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。
扩展资料:
因数的相关性质
1、整除:若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),记作b|a。
2、质数﹙素数﹚:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身外两个因数,无法被其他自然数整除的数)。
3、合数:除了1和它本身还有其它正因数。
4、1只有正因数1,所以它既不是质数也不是合数。
5、若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。
7、1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。
8、所有不为零的整数都是0的因数。(还有争议)
9、2是最小的质数。
10、4是最小的合数。
参考资料来源:百度百科-质因数
参考资料来源:百度百科-合数
参考资料来源:百度百科-质数
参考资料来源:百度百科-因数
B 我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数.
质数=素数
也就是只能够被1和自身整除的数,比如:2,3,5,7,之类的;
合数就是除了1和自身以外还可以被其他数整除的数,这就更多了,比如4,6,8,10,之类的,偶数除了2之外都是合数,奇数当然也可以是合数
每一个合数都可以被写成几个质数相乘的形式,比如6,就可以写成2*3,2和3就是6的质因数.把一个数写成几个质数相乘的形式,就称为分解质因数
希望这些可以帮助你
需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。
反过来说,称a为b、c的倍数。在研究因数和倍数时,不考虑0。
质数:
质数又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。
根据算术基本定理,每一个比1大的整数,要么本身是一个质数,要么可以写成一系列质数的乘积;而且如果不考虑这些质数在乘积中的顺序,那么写出来的形式是唯一的。最小的质数是2。
合数:
合数,数学用语,英文名为Composite
number,指自然数中除了能被1和本身整除外,还能被其他的数整除(不包括0)的数。与之相对的是质数(因数只有1和它本身,如2,3,5,7,11,13等等,也称素数),而1既不属于质数也不属于合数。最小的合数是4。
质因数:
质因数(素因数或质因子)在数论里是指能整除给定正整数的质数。除了1以外,两个没有其他共同质因子的正整数称为互质。因为1没有质因子,1与任何正整数(包括1本身)都是互质。正整数的因数分解可将正整数表示为一连串的质因子相乘,质因子如重复可以指数表示。根据算术基本定理,任何正整数皆有独一无二的质因子分解式。只有一个质因子的正整数为质数。
每个合数都可以写成几个质数(也可称为素数)相乘的形式,这几个质数就都叫做这个合数的质因数。如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。而这个因数一定是一个质数(1除外)。