求和1²+2²+3²+……+(n-1)² 和1²+2²+3²+……+n²
1个回答
展开全部
an = n^2
= n(n+1) - n
= (1/3)[ n(n+1)(n+2)- (n-1)n(n+1)] - (1/2)[ n(n+1) -(n-1)n]
Sn =a1+a2+...+an
= (1/3)n(n+1)(n+2)- (1/2)n(n+1)
=(1/6)n(n+1)(2n+1)
1^2+2^2+...+(n-1)^2
=(1/6)(n-1)n(2n-1)
1^2+2^2+...+n^2
=(1/6)n(n+1)(2n+1)
= n(n+1) - n
= (1/3)[ n(n+1)(n+2)- (n-1)n(n+1)] - (1/2)[ n(n+1) -(n-1)n]
Sn =a1+a2+...+an
= (1/3)n(n+1)(n+2)- (1/2)n(n+1)
=(1/6)n(n+1)(2n+1)
1^2+2^2+...+(n-1)^2
=(1/6)(n-1)n(2n-1)
1^2+2^2+...+n^2
=(1/6)n(n+1)(2n+1)
追问
怎么知道是这么写的? (1/3)[ n(n+1)(n+2)- (n-1)n(n+1)] - (1/2)[ n(n+1) -(n-1)n]
追答
n(n+1) 后一个 是 (n+2)
n(n+1) 前一个 是 (n-1)
n(n+1)(n+2)- (n-1)n(n+1)
=n(n+1)[ (n+2)-(n-1)]
=3n(n+1)
=>
n(n+1) =(1/3)[n(n+1)(n+2)- (n-1)n(n+1)]
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |