偏微分方程化为长微分方程问题 本题为啥u≠±1,且u>1 啊,
2个回答
展开全部
一阶偏微分方程 - 正文
最简单的一类偏微分方程.一个未知函数u(x)=u(x1,x2,…, xn)所适合的一组一阶偏微分方程即
, (1)
式中(Rn之开集),u是实值函数,.适合(1)的函数u称为其解.单个拟线性方程
(2)
是式(1)的重要特例.解u=u(x)定义了D×R中一个曲面,称为(1)的积分曲面,是其上一点(x,u)处的法线方向数,(α1,α2,…,αn,b))则定义一个方向场,称为特征方向场.式(2)表明积分曲面在其各点上均与该方向场相切.特征方向场的积分曲线,称为(2)的特征曲线.它们是常微分方程组(特征方程)
(3)
的积分曲线.由上所述,可见式(2)的积分曲面是由式(3)的积分曲线织成的.反之,若一曲面u=u(x)是由(3)之积分曲线织成的,则必为式(2)的积分曲面.因此式(3)的讨论对研究偏微分方程(2)有特别的重要意义.
式(2)的定解问题中,最重要的是柯西问题,即在U中给定一个n-1维子流形 у及其上的函数φ(x),要求式(2)的解u=u(x)满足以下的附加条件(初始条件):
. (4)
从几何上看,集是U×R中一个给定的n-1维子流形,而条件(4)即要求积分曲线(它是U×R中的一个n维子流形)通过Γ.
最简单的一类偏微分方程.一个未知函数u(x)=u(x1,x2,…, xn)所适合的一组一阶偏微分方程即
, (1)
式中(Rn之开集),u是实值函数,.适合(1)的函数u称为其解.单个拟线性方程
(2)
是式(1)的重要特例.解u=u(x)定义了D×R中一个曲面,称为(1)的积分曲面,是其上一点(x,u)处的法线方向数,(α1,α2,…,αn,b))则定义一个方向场,称为特征方向场.式(2)表明积分曲面在其各点上均与该方向场相切.特征方向场的积分曲线,称为(2)的特征曲线.它们是常微分方程组(特征方程)
(3)
的积分曲线.由上所述,可见式(2)的积分曲面是由式(3)的积分曲线织成的.反之,若一曲面u=u(x)是由(3)之积分曲线织成的,则必为式(2)的积分曲面.因此式(3)的讨论对研究偏微分方程(2)有特别的重要意义.
式(2)的定解问题中,最重要的是柯西问题,即在U中给定一个n-1维子流形 у及其上的函数φ(x),要求式(2)的解u=u(x)满足以下的附加条件(初始条件):
. (4)
从几何上看,集是U×R中一个给定的n-1维子流形,而条件(4)即要求积分曲线(它是U×R中的一个n维子流形)通过Γ.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
楼主,我也遇到了这个问题,我知道u不等于正负一但是为什么大于1啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询