二重积分变上限求导,怎么实现的。帮忙写过程 5

 我来答
帐号已注销
2021-08-12 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

把第二个积分中的t换为x,直接写下来,然后乘以x的导数(这儿就是乘以1)。

二重积分

二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。

教育小百科达人
2019-05-13 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:465万
展开全部

具体回答如图:

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分。

扩展资料:

当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。

在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。

二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

参考资料来源:百度百科——二重积分

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hxzhu66
高粉答主

推荐于2017-12-09 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:96%
帮助的人:1.1亿
展开全部

你好!这就是简单的变上限定积分求导,如图改个记号就很清楚了。经济数学团队帮你解答,请及时采纳。谢谢!

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
龙渊龙傲
推荐于2018-01-20 · TA获得超过3694个赞
知道小有建树答主
回答量:974
采纳率:92%
帮助的人:240万
展开全部

记得采纳,不懂再问

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
艾朋义穰漫
2019-10-07 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:728万
展开全部
具体回答如图:

二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分。
扩展资料:
当被积函数大于零时,二重积分是柱体的体积。当被积函数小于零时,二重积分是柱体体积负值。
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。
二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
参考资料来源:百度百科——二重积分
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式