2016-10-05 · 知道合伙人教育行家
关注
展开全部
当x>0时,1/x>x=x^2<1, -1<x<1且x>0, 得0<x<1
当x<0时, -1/x>x, 1/x + x<0, (1+x^2)/x<0, 分子>0, 所以x<0
以上二部分取并,得 x<0或0<x<1
x不=1, 当x+1>=0时, ( x+1)-1/(x-1)<0, (x^2-2)/(x-1)<0,
(x-根号2)(x+根号2)(x-1)<0 且x>-1, x不=1
x<-根号2 或1<x<根号2 且x>-1, x不=1
得: 1<x<根号2
当x<-1时, -x-1<1/(x-1), 1/(x-1)+(x+1)>0
x^2/(x-1)>0, 只要分母x-1>0, x>1
但x<-1且x>1 为空集
所以不等式的解为; 1<x<根号2
x/(x+1)<0, x(x+1)<0, 所以 -1<x<0
展开全部
(1)
|1/x|> x
=> x≠0 (1)
|1/x|> x
1/x^2 > x^2
x^4 < 1
(x^2 -1)(x^2+1) <0
x^2-1<0
-1<x<1 (2)
|1/x|> x
(1) and (2)
x ≠0 and -1<x<1
-1<x<0 or 0<x<1
(2)
|x+1| < 1/(x-1)
=>x>1 (1)
|x+1| < 1/(x-1)
(x+1)^2 . (x-1)^2 <1
(x^2-1)^2 <1
x^4 -2x^2<0
x^2.(x^2 -2) <0
x^2 -2 <0
-√2< x< √2 (2)
|x+1| < 1/(x-1)
(1) and (2)
x>1 and -√2< x< √2
1< x< √2
(3)
|x/(x+1)| > x/(x+1)
=> x≠-1 (1)
|x/(x+1)| > x/(x+1)
=>
x/(x+1) <0
-1<x<0 (2)
|x/(x+1)| > x/(x+1)
(1) and (2)
x≠-1 and -1<x<0
-1<x<0
|1/x|> x
=> x≠0 (1)
|1/x|> x
1/x^2 > x^2
x^4 < 1
(x^2 -1)(x^2+1) <0
x^2-1<0
-1<x<1 (2)
|1/x|> x
(1) and (2)
x ≠0 and -1<x<1
-1<x<0 or 0<x<1
(2)
|x+1| < 1/(x-1)
=>x>1 (1)
|x+1| < 1/(x-1)
(x+1)^2 . (x-1)^2 <1
(x^2-1)^2 <1
x^4 -2x^2<0
x^2.(x^2 -2) <0
x^2 -2 <0
-√2< x< √2 (2)
|x+1| < 1/(x-1)
(1) and (2)
x>1 and -√2< x< √2
1< x< √2
(3)
|x/(x+1)| > x/(x+1)
=> x≠-1 (1)
|x/(x+1)| > x/(x+1)
=>
x/(x+1) <0
-1<x<0 (2)
|x/(x+1)| > x/(x+1)
(1) and (2)
x≠-1 and -1<x<0
-1<x<0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分x>0和x<02中情况讨论
3,都是分X>-1 和x<-1讨论
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询