1个回答
展开全部
f(x)的定义域是x>0,设定义域内任意0<x1<x2,则:
f(x2)-f(x1)=lnx2-lnx1+a/x1-a/x2=ln(x2/x1)+a(x2-x1)/(x1x2)
因x2/x1>1,故ln(x2/x1)>0,又a>0,则f(x2)-(x1)>0
故函数单调增加。
(2)
极值点是最小值时:
f'(x)=1/x+a/x^2, f''(x)=-1/x^2-2a/x^3
f'(x)=0时,1/x+a/x^2=0,x=-a
f(-a)=ln(-a)-a/(-a)=ln(-a)+1
若ln(-a)+1=2,则a=-e,
此时x=e在区间[1,e]内,f''(e)=1/e^2>0,即存在极小值
边界值x=1处是函数最小值时:
f(1)=ln1-a=2,则a=-2
此时极值点f(-a)=f(2)=ln2+2/2=ln2+1<2,即比边界值更小,故f(1)不是函数最小值
因此a=-e
f(x2)-f(x1)=lnx2-lnx1+a/x1-a/x2=ln(x2/x1)+a(x2-x1)/(x1x2)
因x2/x1>1,故ln(x2/x1)>0,又a>0,则f(x2)-(x1)>0
故函数单调增加。
(2)
极值点是最小值时:
f'(x)=1/x+a/x^2, f''(x)=-1/x^2-2a/x^3
f'(x)=0时,1/x+a/x^2=0,x=-a
f(-a)=ln(-a)-a/(-a)=ln(-a)+1
若ln(-a)+1=2,则a=-e,
此时x=e在区间[1,e]内,f''(e)=1/e^2>0,即存在极小值
边界值x=1处是函数最小值时:
f(1)=ln1-a=2,则a=-2
此时极值点f(-a)=f(2)=ln2+2/2=ln2+1<2,即比边界值更小,故f(1)不是函数最小值
因此a=-e
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询