这个三角函数题目求解答 10

 我来答
匿名用户
2016-12-24
展开全部
f(x) = sin²x-sin²(x-π/6)
= {sinx+sin(x-π/6)} {sinx-sin(x-π/6)}
= 2sin[(x+x-π/6)/2]cos[(x-x+π/6)/2] * 2cos[(x+x-π/6)/2]sin[(x-x+π/6)/2]
= 2sin(x-π/12)cos(π/12) * 2cos(x-π/12)sin(π/12)
= 2sin(x-π/12)cos(x-π/12)* 2sin(π/12)cos(π/12)
= sin(2x-π/6) * sin(π/6)
= 1/2sin(2x-π/6)

最小正周期 = 2π/2 = π

x∈【-π/3,π/4】
2x∈【-2π/3,π/2】
2x-π/6 ∈【-5π/6,π/3】

2x-π/6=-π/2时,最小值 = -1/2
2x-π/6=π/3时,最大值 = √3/4
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
cmhdd
高粉答主

2016-12-24 · 说的都是干货,快来关注
知道大有可为答主
回答量:3.1万
采纳率:70%
帮助的人:4601万
展开全部
(Ⅰ)
化简
f(x)=sin²x﹣sin²(x﹣π/6)
=(1﹣cos2x)/2﹣[1﹣cos(2x﹣π/3)]/2
=(1﹣cos2x﹣1+cos2x/2+√3sin2x/2)/2
=(﹣cos2x/2+√3sin2x/2)/2
=sin(2x﹣π/6)/2
∴f(x)的最小正周期:T=π;
(Ⅱ)
∵x∈[﹣π/3,π/4],
∴2x﹣π/6∈[﹣5π/6,π/3],
∴sin(2x﹣π/6)∈[﹣1,√3/2],∴sin(2x﹣π/6)/2∈[﹣1/2,√3/4],
∴f(x)在区间[﹣π/3,π/4]内的最大值和最小值分别为:√3/4,﹣1/2.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
风动云烟Plus
2016-12-24 · 超过16用户采纳过TA的回答
知道答主
回答量:132
采纳率:0%
帮助的人:30.8万
展开全部
看不清
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式