请问这个题目怎么做啊,希望大家给出一个比较详细的解答过程,谢谢大家了 10
1个回答
展开全部
FL=490+(L*5)*(L/2)=(5/2)L^2+490
F=(5/2)L+(490/L)
F'=(5/2)+(490)(-1/L^2)=0
L^2=49*4
L=7*2=14 M
①f(x)=e^(-x)•(x²+ax+1)
f'(x)=-e^(-x)•(x²+ax+1)+e^(-x)•(2x+a)
=-e^(-x)•[x²+(a-2)x+1-a]
=-e^(-x)•(x-1)(x-1+a)
(ⅰ)当a=0时,f'(x)=-e^(-x)•(x-1)²≤0,f(x)为R上的减函数;
(ⅱ)当a>0时,令f'(x)>0,即 (x-1)(x-1+a)<0,解得 1-a<x<1,函数f(x)在[1-a,1]上是增函数,同理,f(x)在(-∞,1-a]和[1,+∞)上是减函数;
(ⅲ)当a<0时,令f'(x)>0,即 (x-1)(x-1+a)<0,解得 1<x<1-a,函数f(x)在[1,1-a]上是增函数,同理,f(x)在(-∞,1]和[1-a,+∞)上是减函数。
②-1<a<0时,f(x)在[-2,1]上是减函数,最小值为f(1)=e^(-1)•(a+2)=(a+2)/e
F=(5/2)L+(490/L)
F'=(5/2)+(490)(-1/L^2)=0
L^2=49*4
L=7*2=14 M
①f(x)=e^(-x)•(x²+ax+1)
f'(x)=-e^(-x)•(x²+ax+1)+e^(-x)•(2x+a)
=-e^(-x)•[x²+(a-2)x+1-a]
=-e^(-x)•(x-1)(x-1+a)
(ⅰ)当a=0时,f'(x)=-e^(-x)•(x-1)²≤0,f(x)为R上的减函数;
(ⅱ)当a>0时,令f'(x)>0,即 (x-1)(x-1+a)<0,解得 1-a<x<1,函数f(x)在[1-a,1]上是增函数,同理,f(x)在(-∞,1-a]和[1,+∞)上是减函数;
(ⅲ)当a<0时,令f'(x)>0,即 (x-1)(x-1+a)<0,解得 1<x<1-a,函数f(x)在[1,1-a]上是增函数,同理,f(x)在(-∞,1]和[1-a,+∞)上是减函数。
②-1<a<0时,f(x)在[-2,1]上是减函数,最小值为f(1)=e^(-1)•(a+2)=(a+2)/e
追问
这是什么,不是我的题目吧
11111
2024-11-15 广告
2024-11-15 广告
作业指导书是一种专门编写的指导性文件,用于完成某一项或同一类型的工作。它是根据设计图纸、制造厂说明书、相关的验评标准、编写人员现场所积累的施工经验以及成熟实用的施工工艺所编写的。定义和作用作业指导书是质量管理体系文件的组成部分,主要用于阐明...
点击进入详情页
本回答由11111提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询