
讨论分段函数的连续性和可导性
1个回答
2017-10-18
展开全部
1、连续性证明:
左极限=lim(x→0-)f(x)=lim(x→0-)x(用x=0左边的函数式,即x<0的函数式求)
=0
右极限=lim(x→0+)f(x)=lim(x→0+)x²(用x=0右边的函数式,即x>0的函数式求)
=0
左右极限相等,所以极限存在,即lim(x→0)f(x)=0
而根据题意,f(0)=0²=0=lim(x→0)f(x),在x=0点处极限值=函数值,所以在x=0点处连续。
2、可导性证明:
因为在x=0点处连续,所以可以直接用函数表达式求左右导数
左导数=(x)'(用x=0左边的函数式,即x<0的函数式求)=1
右导数=(x²)'(用x=0右边的函数式,即x>0的函数式求)=2x=2*0=0
所以在x=0点处的左导数=1,右导数=0,左右导数不相等,f(x)在x=0点处不可导。
左极限=lim(x→0-)f(x)=lim(x→0-)x(用x=0左边的函数式,即x<0的函数式求)
=0
右极限=lim(x→0+)f(x)=lim(x→0+)x²(用x=0右边的函数式,即x>0的函数式求)
=0
左右极限相等,所以极限存在,即lim(x→0)f(x)=0
而根据题意,f(0)=0²=0=lim(x→0)f(x),在x=0点处极限值=函数值,所以在x=0点处连续。
2、可导性证明:
因为在x=0点处连续,所以可以直接用函数表达式求左右导数
左导数=(x)'(用x=0左边的函数式,即x<0的函数式求)=1
右导数=(x²)'(用x=0右边的函数式,即x>0的函数式求)=2x=2*0=0
所以在x=0点处的左导数=1,右导数=0,左右导数不相等,f(x)在x=0点处不可导。

2025-04-08 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询