定积分定义是什么?
展开全部
定积分正式名称是黎曼积分,是一个数学定义。分划的参数趋于零时的极限,叫做这个函数在这个闭区间上的定积分。
不定积分是一组导数相同的原函数,定积分则是一个数值。求一个函数的原函数,叫做求它的不定积分;求一个函数相应于闭区间的一个带标志点分划的黎曼和关于这个分划的参数趋于零时的极限,叫做这个函数在这个闭区间上的定积分。
不定积分(Indefinite integral)
即已知导数求原函数。若 F′(x)=f(x),那么[ F(x)+C]′=f(x).(C∈ R).也就是说,把f(x)积分,不一定能得到 F(x),因为 F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用 F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询