1个回答
展开全部
(1)小球在C点受到向下的重力mg和FN,由向心力公式,
mvC²/R=mg+3/2*mg,得vC²=5/2*gR
由能量守恒,Ep=mCv²/2+mg2R=13mgR/4
(2)当小球恰好打在点E时,由几何关系可知做平抛运动的水平位移x1=2Rcos37º=1.6R,竖直位移y1=2R-2Rsin37º=0.8R
设初速度为v1,有
x1=v1t,y1=gt²/2
解得v1²=1.6gR
同理当小球恰好打在D点时,初速度v2=1.6gR/7
但小球经过点C时,向心力至少要由重力提供,有m1v0²/R≥m1g,v0²≥gR,联立以上式子得小球落在板DE上时,速度v满足v²∈[gR,1.6gR]
由能量守恒,
13mgR/4=m1g2R+m1v²/2
得m1=13mgR/(8gR+2v²)
代入v²的范围得m1∈[65m/56,13m/10]
mvC²/R=mg+3/2*mg,得vC²=5/2*gR
由能量守恒,Ep=mCv²/2+mg2R=13mgR/4
(2)当小球恰好打在点E时,由几何关系可知做平抛运动的水平位移x1=2Rcos37º=1.6R,竖直位移y1=2R-2Rsin37º=0.8R
设初速度为v1,有
x1=v1t,y1=gt²/2
解得v1²=1.6gR
同理当小球恰好打在D点时,初速度v2=1.6gR/7
但小球经过点C时,向心力至少要由重力提供,有m1v0²/R≥m1g,v0²≥gR,联立以上式子得小球落在板DE上时,速度v满足v²∈[gR,1.6gR]
由能量守恒,
13mgR/4=m1g2R+m1v²/2
得m1=13mgR/(8gR+2v²)
代入v²的范围得m1∈[65m/56,13m/10]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询