1个回答
展开全部
f(x)=(3x+4)/(x+1) ,g(x) =x^2-2ax+1
y
=f(g(x))
=[3(x^2-2ax+1)+4]/[(x^2-2ax+1)+1 ]
=( 3x^2-6ax+7)/( x^2-2ax +2)
=[( 3x^2-6ax+6) +1]/( x^2-2ax +2)
= 2 +1/( x^2-2ax +2)
= 2 +1/[ (x-a)^2 + 2-a^2 ]
max f(g(x)) = f(g(a))
case 1: a≤0
f(g(x)) = 2 +1/[ (x-a)^2 + 2-a^2 ]
max f(g(x))
=f(g(0))
=2 +1/[ (0-a)^2 + 2-a^2 ]
=2 + 1/2
=5/2
min f(g(x))
=f(g(1))
=2 +1/[ (1-a)^2 + 2-a^2 ]
=2 + [ 1/ (3-2a )]
case 2: 0<a<1
max f(g(x))
=f(g(a))
=2 +1/(2-a^2)
f(g(1)) =2 + [ 1/ (3-2a )]
f(g(0)) =5/2
min f(g(x)) = min { f(g(1)) , f(g(0)) }
case 3: a≥1
max f(g(x)) =f(g(1)) =2 + [ 1/ (3-2a )]
min f(g(x)) =f(g(0)) =5/2
y
=f(g(x))
=[3(x^2-2ax+1)+4]/[(x^2-2ax+1)+1 ]
=( 3x^2-6ax+7)/( x^2-2ax +2)
=[( 3x^2-6ax+6) +1]/( x^2-2ax +2)
= 2 +1/( x^2-2ax +2)
= 2 +1/[ (x-a)^2 + 2-a^2 ]
max f(g(x)) = f(g(a))
case 1: a≤0
f(g(x)) = 2 +1/[ (x-a)^2 + 2-a^2 ]
max f(g(x))
=f(g(0))
=2 +1/[ (0-a)^2 + 2-a^2 ]
=2 + 1/2
=5/2
min f(g(x))
=f(g(1))
=2 +1/[ (1-a)^2 + 2-a^2 ]
=2 + [ 1/ (3-2a )]
case 2: 0<a<1
max f(g(x))
=f(g(a))
=2 +1/(2-a^2)
f(g(1)) =2 + [ 1/ (3-2a )]
f(g(0)) =5/2
min f(g(x)) = min { f(g(1)) , f(g(0)) }
case 3: a≥1
max f(g(x)) =f(g(1)) =2 + [ 1/ (3-2a )]
min f(g(x)) =f(g(0)) =5/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询