定积分计算,对称区间偶函数,这步变化是不是少乘了一个2?
2个回答
展开全部
积分函数并不是偶函数, 分子是偶函数,分母是非奇非偶函数。
I = ∫<-π/2, π/2>(sinx)^4dx/[1+e^(-2x)]
= ∫<-π/2, 0>(sinx)^4dx/[1+e^(-2x)] + ∫<0, π/2>(sinx)^4dx/[1+e^(-2x)]
前者令 x = -u
I = ∫<π/2, 0>[sin(-u)]^4(-du)/[1+e^(2u)] + ∫<0, π/2>(sinx)^4dx/[1+e^(-2x)]
= ∫<0, π/2>(sinu)^4du/[1+e^(2u)] + ∫<0, π/2>(sinx)^4dx/[1+e^(-2x)]
定积分与积分变量无关, 将 u 换为 x
I = ∫<0, π/2>(sinx)^4du/[1+e^(2x)] + ∫<0, π/2>(sinx)^4dx/[1+e^(-2x)]
= ∫<0, π/2>{(sinx)^4/[1+e^(2x)] + (sinx)^4/[1+e^(-2x)]}dx
I = ∫<-π/2, π/2>(sinx)^4dx/[1+e^(-2x)]
= ∫<-π/2, 0>(sinx)^4dx/[1+e^(-2x)] + ∫<0, π/2>(sinx)^4dx/[1+e^(-2x)]
前者令 x = -u
I = ∫<π/2, 0>[sin(-u)]^4(-du)/[1+e^(2u)] + ∫<0, π/2>(sinx)^4dx/[1+e^(-2x)]
= ∫<0, π/2>(sinu)^4du/[1+e^(2u)] + ∫<0, π/2>(sinx)^4dx/[1+e^(-2x)]
定积分与积分变量无关, 将 u 换为 x
I = ∫<0, π/2>(sinx)^4du/[1+e^(2x)] + ∫<0, π/2>(sinx)^4dx/[1+e^(-2x)]
= ∫<0, π/2>{(sinx)^4/[1+e^(2x)] + (sinx)^4/[1+e^(-2x)]}dx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询