2个回答
2019-10-17 · 知道合伙人教育行家
关注
展开全部
1
=lim<x->0>{[(1+x+x^2/2+o(x^2))(x-x^3/6+o(x^4))-x(1+x)]/x^3}
=lim<x->0>{[x^3/2-x^3/6+o(x^3)]/x^3}
=lim<x->0>{[x^3/3+o(x^3)]/x^3}=1/3
2
=lim<x->正无穷>{x(x^2-x+1)[1+1/x+1/(2x^2)+1/(6x^3)+o(1/x^3)]-[x^3+1/(2x^3)]}
=lim<x->正无穷>{x(x^2-x+1/2)[1+1/x+1/(2x^2)+1/(6x^3)+o(1/x^3)]-[x^3+O(1/x^3)]}
=lim<x->正无穷>{[(x^2-x+1/2)(x^2+x+1/2)/x+1/6+o(1)]-[x^3+O(1/x^3)]}
=lim<x->正无穷>{[(x^4+1/4)/x+1/6+o(1)]-[x^3+O(1/x^3)]}
=lim<x->正无穷>{[x^3+1/(4x)+1/6+o(1)]-[x^3+O(1/x^3)]}
=lim<x->正无穷>{1/(4x)+1/6+o(1)}=1/6
注:
1. 根号内的1完全可以忽略不计
2. [x^3+1/(2x^3)]^2=x^6+1+1/(4x^6)>x^6+1
=lim<x->0>{[(1+x+x^2/2+o(x^2))(x-x^3/6+o(x^4))-x(1+x)]/x^3}
=lim<x->0>{[x^3/2-x^3/6+o(x^3)]/x^3}
=lim<x->0>{[x^3/3+o(x^3)]/x^3}=1/3
2
=lim<x->正无穷>{x(x^2-x+1)[1+1/x+1/(2x^2)+1/(6x^3)+o(1/x^3)]-[x^3+1/(2x^3)]}
=lim<x->正无穷>{x(x^2-x+1/2)[1+1/x+1/(2x^2)+1/(6x^3)+o(1/x^3)]-[x^3+O(1/x^3)]}
=lim<x->正无穷>{[(x^2-x+1/2)(x^2+x+1/2)/x+1/6+o(1)]-[x^3+O(1/x^3)]}
=lim<x->正无穷>{[(x^4+1/4)/x+1/6+o(1)]-[x^3+O(1/x^3)]}
=lim<x->正无穷>{[x^3+1/(4x)+1/6+o(1)]-[x^3+O(1/x^3)]}
=lim<x->正无穷>{1/(4x)+1/6+o(1)}=1/6
注:
1. 根号内的1完全可以忽略不计
2. [x^3+1/(2x^3)]^2=x^6+1+1/(4x^6)>x^6+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询