勾股定理是什么?
17个回答
展开全部
勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras
Theorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。
在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方,即α*α+b*b=c*c
推广:把指数改为n时,等号变为小于号
当三角形为钝角时,哪么a的平方+b的平方〈c的平方,即a*a+b*b〈c*c
当三角形为锐角时,哪么a的平方+b的平方〉c的平方,即a*a+b*b〉c*c
据考证,人类对这条定理的认识,少说也超过
4000
年
勾股数:是指能组成a^+b^=c^的三个正整数称为勾股数.
Theorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。
在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方,即α*α+b*b=c*c
推广:把指数改为n时,等号变为小于号
当三角形为钝角时,哪么a的平方+b的平方〈c的平方,即a*a+b*b〈c*c
当三角形为锐角时,哪么a的平方+b的平方〉c的平方,即a*a+b*b〉c*c
据考证,人类对这条定理的认识,少说也超过
4000
年
勾股数:是指能组成a^+b^=c^的三个正整数称为勾股数.
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。
世界上几个文明古国如古巴比伦、古埃及都先后研究过这条定理。我国也是最早了解勾股定理的国家之一,被称为“商高定理”。
勾股直角边
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
勾股定理是:直角三角形直角边a、b与斜边关系是:a^2加b^2等于c^2.a^2表示a的平方哦~
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
直角三角形的两条直角边的平方和等于斜边的平方。即a²+b²=c²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询