
怎么算这个积分?
展开全部
(2)作变换x=rcosu,y=rsinu,则dxdy=rdrdu,
原式=∫<π/2,3π/4>du∫<0,2>r^2dr
+∫<3π/4,5π/4>du∫<0,-√2/cosu>r^2dr
+∫<0,π/2>du∫<2cosu,2>r^2dr
=π/4*8/3
+(1/3)∫<3π/4,5π/4>[-2√2/(cosu)^3]du
+(8/3)∫<0,π/2>[1-(cosu)^3]du
=2π/3+(2√2/3)∫<-1/√2,1/√2>dt/(1-t^2)^2(t=sinu)
+(8/3)[π/2-(t-t^3/3)|<0,1>]
=2π/3+(√2/3)[ln|(1+t)/(1-t)|-1/(t+1)-1/(t-1)]|<0,1/√2>
+4π/3-16/9
=2π+(√2/3)[2ln(√2+1)+2√2]-16/9.
=2π+(2√2/3)ln(√2+1)-4/9.
原式=∫<π/2,3π/4>du∫<0,2>r^2dr
+∫<3π/4,5π/4>du∫<0,-√2/cosu>r^2dr
+∫<0,π/2>du∫<2cosu,2>r^2dr
=π/4*8/3
+(1/3)∫<3π/4,5π/4>[-2√2/(cosu)^3]du
+(8/3)∫<0,π/2>[1-(cosu)^3]du
=2π/3+(2√2/3)∫<-1/√2,1/√2>dt/(1-t^2)^2(t=sinu)
+(8/3)[π/2-(t-t^3/3)|<0,1>]
=2π/3+(√2/3)[ln|(1+t)/(1-t)|-1/(t+1)-1/(t-1)]|<0,1/√2>
+4π/3-16/9
=2π+(√2/3)[2ln(√2+1)+2√2]-16/9.
=2π+(2√2/3)ln(√2+1)-4/9.
追问
谢谢,能拍张照片吗,做变换之后,上下限是什么?
追答
上下限用表示,余者类推。
我不会截图。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询