正方形ABCD中,E,F分别为BC,CD上的点,AG垂直EF于G,若角EAF=45度,求证:AG=AD 我来答 2个回答 #热议# 什么是淋病?哪些行为会感染淋病? 淦馨兰玄靓 游戏玩家 2020-04-26 · 游戏我都懂点儿,问我就对了 知道大有可为答主 回答量:1.1万 采纳率:31% 帮助的人:565万 我也去答题访问个人页 关注 展开全部 延长CD到P使DP=BE正方形:AD=AB∠B=∠ADC=∠BAD=90度∠ADC+∠ADP=180度∠B=∠ADP=90度△ABE全等△ADPAE=AP∠BAE=∠DAP∠EAF=45度∠BAD=90所以∠BAE+∠FAD=∠FAD+∠DAP=∠FAP=45度因为∠EAF=FAPAF公共边AE=AP△EAF全等△FAP得∠AFG=∠AFDAF公共边∠AGF=∠ADF=90度所以△AFG全等△AFD所以AG=AD 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 国依霜费思 游戏玩家 2020-05-09 · 非著名电竞玩家 知道大有可为答主 回答量:1.1万 采纳率:30% 帮助的人:889万 我也去答题访问个人页 关注 展开全部 我会了我只讲解题步骤连结AF,AE延长CD至E'使DE'=BE,连结BE图画好开证先证BE+DF=EF(好象和勾股定理有关)再证三角形AEF全等与三角形AE'F从而得出AE=AE'所以三角形AEG全等与三角形AFD所以AG=AD得证关于第一步BE+DF=EF我还要想想初中证过的现在又忘了 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-09-06 正方形ABCD,点E,F分别在BC,CD上,角EAF=45度,AH垂直EF于H,求证:AH=AB 2012-08-22 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且角EAF=45度,AG垂直于EF于G。求证:AB=AG 14 2011-09-13 如图 在正方形ABCD中,E,F分别是BC,CD上的中点,且角EAF=45度,AG垂直于EF,垂足为G, 求证AB=AG 速度 啊~~~~~~ 50 2011-05-10 如图,已知正方形ABCD中,点E是对角线AC上的一点,EF垂直于CD,ED垂直于AD,垂足分别为点F,G 求证:BE=FG 31 2011-06-18 正方形ABCD中,E、F分别为BC、CD边上的一点,若角EAF=45度,求证EF=BE+DF 101 2018-04-06 如图,在正方形abcd中,e是对角线ac上的一点,ef垂直cd于F,EG垂直AD于G,求证BE等于 54 2012-01-04 1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数. 47 2011-01-05 E是正方形ABCD的对角线BD上一点,EF垂直BC,EG垂直CD,垂足分别是F,G。求证:AE=FG 2 为你推荐: