已知函数f(x)=√3sinxcosx+cos²x+a若f(x)在区间【-π/6,π,3】上的最大值与最小值的和为3/2,求a的值

 我来答
尉绮艳黄通
2020-02-24 · TA获得超过3万个赞
知道大有可为答主
回答量:9884
采纳率:30%
帮助的人:937万
展开全部
f(x)=√3sinxcosx+cos²x+a
=(sin2x)×(√3/2)+(cos2x+1)×(1/2)+a
=(cosπ/6)×sin2x+(sinπ/6)×cos2x+1/2+a
=sin(2x+π/6)+(a+1/2)
-π/6≤x≤π/3时
-π/6≤2x+π/6≤5π/6
即,-1/2≤sin(2x+π/6)≤1
所以,a≤f(x)≤a+3/2
因为,f(x)在区间【-π/6,π/3】上的最大值与最小值的和为3/2
所以,a+a+3/2=3/2
即,2a=0
解得,a=0
所以,a的值为0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式