y=f(x)关于点(a,b)对称的表达式是什么

 我来答
奕望仁惜蕊
2019-04-08 · TA获得超过3771个赞
知道大有可为答主
回答量:3087
采纳率:29%
帮助的人:233万
展开全部
y=f(x)关于x=a对称的表达式
定义在R上的函数y=f(x)对定义域内任意x满足条件f(x)=2b-f(2a-x),则y=f(x)关于点(a,b)对称
证明:依题意,定义在R上的函数y=f(x)对定义域内任意x满足条件f(x)=2b-f(2a-x).
可将2a-x看成x’,即2a-x=x’→x+x’=2a.①
f(x)=2b-f(x’)→f(x)=2b-f(x’)→f(x)+f(x’)=2b.②
由①②可知对于函数y=f(x)上任意的(x,f(x))都存在(x’,f(x’))与之关于点(a,b)对称,所以定义在R上的函数y=f(x)对定义域内任意x满足条件f(x)=2b-f(2a-x),则y=f(x)关于点(a,b)对称[解题过程]从函数表达式来研究,
对于直线对称:若f(x)关于x=a对称,则有f(x)=f(2a-x)或f(a+x)=f(a-x);
对于点对称:f(x)关于(a,0)对称,则有f(x)=-(2a-x)或f(a+x)=-f(a-x)。
对于奇函数[f(x)=-f(-x)]和偶函数[f(x)=f(-x)],则是这两类对称中的特例。
延伸:若是f(a+x)=f(b+x),则函数关于关于直线x=(a+b)/2对称

函数f(x)
(1)是偶函数,
(2)关于x=a对称
分析:由条件(2),可得f(a+x)=f(a-x),又由条件(1),所以f(x+a)=f(x-a)。
(以x+a代替上式中的x),所以f(x)=f(2a+x),由周期定义f(x)=f(T+x),所以f(x)是以|2a|为周期的函数

函数f(x)
(1)是奇函数,(2)关于x=a对称
分析:由条件(2),可得f(x)=f(2a-x)又由条件(1)f(x)=-f(-x),所以-f(-x)=f(2a-x),即-f(x)=f(2a+x),所以f(4a+x)=-f(2a+x)=f(x),可得函数f(x)是以|4a|为周期的函数,
赵英博区芝
2020-03-10 · TA获得超过3.5万个赞
知道大有可为答主
回答量:1.3万
采纳率:28%
帮助的人:1105万
展开全部
y=f(x)关于点(a,b)对称的函数方程表达式为
2b-y=f(2a-x),即:
y=2b-f(2a-x)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式