在平面直角坐标系中有两条直线,y=3/5x+9/5和y=-3/2x+6它们的交点为p,与X轴交点分别为AB
展开全部
1.直线:y=(3/5)x+9/5,令y=0,求出x=-3,∴此直线与x轴交于A(-3,0);
直线y=(-3/2)x+6,令y=0,求出x=4,∴此直线与y轴交于B(4,0);
联立两条直线的方程,构成二元一次方程组:
/y=(3/5)x+9/5
\y=(-3/2)x+6
可解出此方程组的解为:
x=2,y=3
故,两直线的交点为P(2,3)
综上,三点坐标分别为:A(-3,0),B(4,0),P(2,3)
2.将A,B,P三点的坐标分别在坐标系中表示出来,可以观察出:
AB作为△PAB的一边,其上的高线长度即为P点的纵坐标的绝对值(因为AB都在x轴上,AB的垂线必与x轴垂直,由P点引出的AB边上的高就是垂直x轴的,由坐标定义可知,此高线就是P点纵坐标)
∴S△PAB=|AB|*|yP|/2=|xB-xA|*|3|/2=|4-(-3)|*3/2=21/2
直线y=(-3/2)x+6,令y=0,求出x=4,∴此直线与y轴交于B(4,0);
联立两条直线的方程,构成二元一次方程组:
/y=(3/5)x+9/5
\y=(-3/2)x+6
可解出此方程组的解为:
x=2,y=3
故,两直线的交点为P(2,3)
综上,三点坐标分别为:A(-3,0),B(4,0),P(2,3)
2.将A,B,P三点的坐标分别在坐标系中表示出来,可以观察出:
AB作为△PAB的一边,其上的高线长度即为P点的纵坐标的绝对值(因为AB都在x轴上,AB的垂线必与x轴垂直,由P点引出的AB边上的高就是垂直x轴的,由坐标定义可知,此高线就是P点纵坐标)
∴S△PAB=|AB|*|yP|/2=|xB-xA|*|3|/2=|4-(-3)|*3/2=21/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询