2个回答
展开全部
使用了如下积分公式!
∫e^(ax)sin(bx)dx
分部积分法,令其为I
=1/a∫sin(bx)d(e^(ax))
=1/a*sin(bx)*e^(ax)-1/a∫e^(ax)d(sinbx)
=e^(ax)sin(bx)/a-b/a∫e^(ax)cos(bx)dx=e^(ax)sin(bx)/a-b/a^2∫cos(bx)d(e^(ax))
=e^(ax)sin(bx)/a-b/a^2*e^(ax)cos(bx)+b/a^2∫e^(ax)d(cos(bx))
=e^(ax)sin(bx)/a-b/a^2*e^(ax)cos(bx)+b^2/a^2∫e^(ax)sin(bx)dx
移项得到:
(1-b^2/a^2)I
=e^(ax)sin(bx)/a-b/a^2*e^(ax)cos(bx)
=[ae^(ax)sin(bx)-be^(ax)cos(bx)]/a^2I
=[ae^(ax)sin(bx)-be^(ax)cos(bx)]/(1-b^2)
∫e^(ax)sin(bx)dx
分部积分法,令其为I
=1/a∫sin(bx)d(e^(ax))
=1/a*sin(bx)*e^(ax)-1/a∫e^(ax)d(sinbx)
=e^(ax)sin(bx)/a-b/a∫e^(ax)cos(bx)dx=e^(ax)sin(bx)/a-b/a^2∫cos(bx)d(e^(ax))
=e^(ax)sin(bx)/a-b/a^2*e^(ax)cos(bx)+b/a^2∫e^(ax)d(cos(bx))
=e^(ax)sin(bx)/a-b/a^2*e^(ax)cos(bx)+b^2/a^2∫e^(ax)sin(bx)dx
移项得到:
(1-b^2/a^2)I
=e^(ax)sin(bx)/a-b/a^2*e^(ax)cos(bx)
=[ae^(ax)sin(bx)-be^(ax)cos(bx)]/a^2I
=[ae^(ax)sin(bx)-be^(ax)cos(bx)]/(1-b^2)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询