已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,求y=mx2+nx+p
2个回答
展开全部
解:(1)令y=x²+6x+5=0,解得抛物线与x轴的两交点坐标分别为:(-1,0)(-5,0),
再令x=0,代入解得抛物线与y轴的交点坐标(0,5),
再求出三个坐标关于y轴对称的三个坐标,(1,0)(5,0)(0,5),用待定系数法将三个坐标代入y=mx²+nx+p,
{a+b+c=0
25a+5b+c=0
c=5,
解得:a=1
b=-6
c=5
∴抛物线的解析式是y=x2-6x+5.
(2)y=ax2+bx+c关于y轴对称的二次函数解析式为:y=ax2-bx+c.我来回答
再令x=0,代入解得抛物线与y轴的交点坐标(0,5),
再求出三个坐标关于y轴对称的三个坐标,(1,0)(5,0)(0,5),用待定系数法将三个坐标代入y=mx²+nx+p,
{a+b+c=0
25a+5b+c=0
c=5,
解得:a=1
b=-6
c=5
∴抛物线的解析式是y=x2-6x+5.
(2)y=ax2+bx+c关于y轴对称的二次函数解析式为:y=ax2-bx+c.我来回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询