1个回答
展开全部
解:∵微分方程为x"+x=1/(sint)³,化为
x"sint+x'cost-x'cost+xsint=
1/(sint)²,(x'sint)'-(xcost)'=
1/(sint)²
∴两边积分,有x'sint-xcost=-cotx+a(a为任意常数);有x'/sint-xcost/sin²t=
-cost/sin³t+a/sin²t,(x/sint)'=-cost/sin³t+a/sin²t,两边积分,有x/sint=1/2sin²t-acott+b(b为任意常数)
∴方程的通解为x=1/2sint-acost+b
sint
x"sint+x'cost-x'cost+xsint=
1/(sint)²,(x'sint)'-(xcost)'=
1/(sint)²
∴两边积分,有x'sint-xcost=-cotx+a(a为任意常数);有x'/sint-xcost/sin²t=
-cost/sin³t+a/sin²t,(x/sint)'=-cost/sin³t+a/sin²t,两边积分,有x/sint=1/2sin²t-acott+b(b为任意常数)
∴方程的通解为x=1/2sint-acost+b
sint
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询