y=sinα和y=cosα的图像 要图!
图像如下:
函数介绍:
1、正弦函数
一般的,在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。
通常,我们用x表示自变量,即x表示角的大小,用y表示函数值,这样我们就定义了任意角的三角函数y=sin x,它的定义域为全体实数,值域为[-1,1]。
2、余弦函数
余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
扩展资料
三角函数的解题方法:
一、对于公式的记忆,强调一点,就是要关注公式本身的特征,对比理解记忆。
例如:
sin(A+B)=sinAcosB+cosAsinB,我们可以记作“SCCS,左右符号相同”;
cos(A+B)=cosAcosB-sinAsinB,我们就可以记作“CCSS,左右符号相异”。
对于二倍角公式,我们可以在上面公式的基础上,将B换做A即可。
二、纵观往年各地的高考试题,可以确认三角函数的考察方向主要集中在以下三方面:
1、求三角函数的解析式,并研究它的性质,简称为三角函数类;
2、根据边角条件,解三角形,简称为解三角形类;
3、三角函数与其他知识的综合运用题。
三、以下介绍三角函数常见的题型以及解决方法
1、由解析式研究函数的性质
求函数的最小正周期,求函数在某区间上的最值,求函数的单调区间,判定函数的奇偶性,求对称中心,对称轴方程,以及所给函数与y=sinx的图像之间的变换关系等等。
对于这些问题,一般要利用三角恒变换公式将函数解析式化为y=Asin(ωx+φ)的形式,然后再求相应的结果即可。
在这一过程中,一般要先利用诱导公式、二倍角公式、两角和与差的恒等式等将函数化为asinωx+bcosωx形式,然后再利用辅助角公式,化为y=Asin(ωx+φ)即可。
2、根据条件确定函数解析式
这一类题目经常会给出函数的图像,求函数解析式y=Asin(ωx+φ)+B。
A=(最大值-最小值)/2;
B=(最大值+最小值)/2;
通过观察得到函数的周期T(主要是通过最大值点、最小值点、“平衡点”的横坐标之间的距离来确定),然后利用周期公式T=2π/ω来求得ω;
利用特殊点(例如最高点,最低点,与x轴的交点,图像上特别标明坐标的点等)求出某一φ';最后利用诱导公式化为符合要求的解析式。
2020-07-03 广告