二元一次方程怎么算
2020-12-18
展开全部
消元法“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。[1]
消元方法一般分为:代入消元法,简称:代入法(常用)加减消元法,简称:加减法(常用)
顺序消元法,(这种方法不常用)整体代入法.(不常用)
以下是消元方法的举例:
解:{x-y=3①
{3x-8y=4②
由①得x=y+3 ③
把③代入②得
3(y+3)-8y=4
3y+9-8y=4
-5y= -5
5y=5
y=1
把y=1代入(1)得
x-y=3
x-1=3
x=4
原方程组的解为{x=4
{y=1
实用方法
解{13x+14y=41①
{14x+13y=40②
27x+27y=81
y-x=1
27y=54
y=2
x=1
y=2
把y=2代入(3)得
即x=1
所以:x=1,y=2
最后 x=1 , y=2, 解出来
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.
代入法
是二元一次方程的另一种解法,就是说把一个方程用其他未知数表示,再带入另一个方程中.
如:
x+y=590
y+20=90%x
代入后就是:
x+90%x-20=590
例2:(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程[2] 也是主要原因。
消元方法一般分为:代入消元法,简称:代入法(常用)加减消元法,简称:加减法(常用)
顺序消元法,(这种方法不常用)整体代入法.(不常用)
以下是消元方法的举例:
解:{x-y=3①
{3x-8y=4②
由①得x=y+3 ③
把③代入②得
3(y+3)-8y=4
3y+9-8y=4
-5y= -5
5y=5
y=1
把y=1代入(1)得
x-y=3
x-1=3
x=4
原方程组的解为{x=4
{y=1
实用方法
解{13x+14y=41①
{14x+13y=40②
27x+27y=81
y-x=1
27y=54
y=2
x=1
y=2
把y=2代入(3)得
即x=1
所以:x=1,y=2
最后 x=1 , y=2, 解出来
特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.
代入法
是二元一次方程的另一种解法,就是说把一个方程用其他未知数表示,再带入另一个方程中.
如:
x+y=590
y+20=90%x
代入后就是:
x+90%x-20=590
例2:(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可写为
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程[2] 也是主要原因。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |